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Abstract 

LEPOR: AN AUGMENTED MACHINE TRANSLATION EVALUATION 

METRIC 

by LiFeng Han, Aaron 

Thesis Supervisors: Dr. Lidia S. Chao and Dr. Derek F. Wong 

Master of Science in Software Engineering 

Machine translation (MT) was developed as one of the hottest research topics 

in the natural language processing (NLP) literature. One important issue in 

MT is that how to evaluate the MT system reasonably and tell us whether the 

translation system makes an improvement or not. The traditional manual 

judgment methods are expensive, time-consuming, unrepeatable, and 

sometimes with low agreement. On the other hand, the popular automatic MT 

evaluation methods have some weaknesses. Firstly, they tend to perform well 

on the language pairs with English as the target language, but weak when 

English is used as source. Secondly, some methods rely on many additional 

linguistic features to achieve good performance, which makes the metric 

unable to replicateand apply to other language pairs easily. Thirdly, some 

popular metrics utilize incomprehensive factors, which result in low 

performance on some practical tasks. 



In this thesis, to address the existing problems, we design novel MT evaluation 

methods and investigate their performances on different languages. Firstly, we 

design augmented factors to yield highly accurate evaluation.Secondly, we 

design a tunable evaluation model where weighting of factors can be 

optimized according to the characteristics of languages. Thirdly, in the 

enhanced version of our methods, we design concise linguistic feature using 

POS to show that our methods can yield even higher performance when using 

some external linguistic resources. Finally, we introduce the practical 

performance of our metrics in the ACL-WMT workshop shared tasks, which 

show that the proposed methods are robust across different languages. 
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CHAPTER 1: INTRODUCTION 

The machine translation (MT) began as early as in the 1950s (Weaver, 1955), and 

gained a quick development since the 1990s due to the development of computer 

technology, e.g. augmented storage capacity and the computational power, and the 

enlarged bilingual corpora (Mariño et al., 2006). We will first introduce several MT 

events that promote the MT technology, and then it is the importance of MT evalution 

(MTE). Subsequently, we give a brief introduction of each chapter in the thesis. 

1.1 MT Events 

There are several events that promote the development of MT and MT evaluation 

research. 

One of which is the Open machine translation (OpenMT) Evaluation series of 

National Institute of Standards and Technology (NIST) that are very prestigious 

evaluation campaigns, the corpora including Arabic-English and Chinese-English 

language pairs from 2001 to 2009. The OpenMT evaluation series aim to help 

advance the state of the art MT technologies (NIST, 2002, 2009; Li, 2005) and make 

the system output to be an adequate and fluent translation of the original text that 

includes all forms. 

The innovation of MT and the evaluation methods is also promoted by the annual 

Workshop on Statistical Machine Translation (WMT) (Koehn and Monz, 2006; 

Callison-Burch et al., 2007, 2008, 2009, 2010, 2011, 2012) organized by the special 

interest group in machine translation (SIGMT) of the Association for Computational 

Linguistics (ACL) since 2006. The evaluation campaigns focus on European 

languages. There are roughly two tracks in the annual WMT workshop including the 
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translation task and evaluation task. From 2012, they added a new task of Quality 

Estimation of MT without given reference translations (unsupervised evaluation). The 

tested language pairs are clearly divided into two parts, English-to-other and other-to-

English, relating to French, German, Spanish (Koehn and Monz, 2006), Czech 

(Callison-Burch et al., 2007, 2010, 2011, 2012), Hungarian (Callison-Burch et al., 

2008, 2009), and Haitian Creole, featured task translating Haitian Creole SMS 

messages that were sent to an emergency response hotline, due to the Haitian 

earthquake (Callison-Burch et al., 2011). 

Another promotion is the International Workshop of Spoken Language Translation 

(IWSLT) that is organized annually since 2004 (Eck and Hori, 2005; Paul, 2008, 2009; 

Paul, et al., 2010; Federico et al., 2011). This campaign has a stronger focus on 

speech translation including the English and Asian languages, e.g. Chinese, Japanese 

and Korean. 

1.2 Importance of MT Evaluation 

Due to the wide-spread development of MT systems, the MT evaluation becomes 

more and more important to tell us how well the MT systems perform and whether 

they make some progress. However, the MT evaluation is difficult because multiple 

reasons. The natural languages are highly ambiguous and different languages do not 

always express the same content in the same way (Arnold, 2003), and language 

variability results in no single correct translation. 

The earliest human assessment methods for machine translation include the 

intelligibility and fidelity. They were used by the Automatic Language Processing 

Advisory Committee (ALPAC) around 1966 (Carroll, 1966a and 1966b). The 

afterwards proposed human assessment methods include adequacy, fluency, and 

comprehension (improved intelligibility) by Defense Advanced Research Projects 
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Agency (DARPA) of US (White et al., 1994; White, 1995). However, the human 

judgments are usually expensive, time-consuming, and un-repeatable.  

To overcome the weeknesses of manual judgments, the early automatic evaluation 

metrics include the word error rate (WER) (Su et al., 1992), and position independent 

word error rate (PER) (Tillmann et al., 1997). WER and PER are based on the 

Levenshtein distance that is the number of editing steps of insertions, deletions, and 

substitutions to match two sequences. The nowadays commonly used automatic 

metrics include BLEU (Papineni et al., 2002), TER (Snover et al., 2006), and 

METEOR (Banerjee and Lavie, 2005), etc. However, there remain some weaknesses 

in the existing automatic MT evaluation metrics, such as lower performances on the 

language pairs with English as source language, highly relying on large amount of 

linguistic features for good performance, and incomprehensive factors, etc. 

As discussed in the works of Liu et al. (2011) and Wang and Manning (2012b), the 

accurate and robust evaluation metrics are very important for the development of MT 

technology. To address some of the existing problems in the automatic MT evaluation 

metrics, we first design reinforced evaluation factors to achieve robustness; then we 

design tunable parameters to address the language bias performance; finally, we 

investigate some concise linguistic features to enhance the performance our metrics. 

The practical performances in the ACL-WMT shared task show that our metrics were 

robust and achieved some improvements on the language pairs with English as source 

language. 

1.3 Guidance of the Thesis Layout 

This thesis is constructed as the following describes. 

Chapter One is the introduction of MT development and importance of MT evaluation. 

The weeknesses of existing automatic MT evaluation metrics are briefly mentioned 

and we give a brief introduction about how we will address the problem. 
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Chapter Two is the background and related work. It contains the knowledge of 

manual judgment methods, automatic evaluation methods, and the evaluation methods 

for automatic evaluation metrics. 

Chapter Three proposes the designed automatic evaluation method LEPOR of this 

thesis, including the introduction of each factor in the metric. The main factors in the 

LEPOR metric include enhanced sentence length penalty, n-gram position difference 

penalty, and the harmonic mean of precision and recall. We designed several different 

strategies to group the factors together. 

Chapter Four is the improved models of the designed LEPOR metric. This chapter 

contains the new factors and linguistic features developed in the metric and several 

variants of LEPOR. 

Chapter Five is the experimental evaluation of the designed LEPOR metric. It 

introduces the used corpora, evaluation criteria, experimental results, and comparisons 

with existing metrics. 

Chapter Six introduces the participation in the annual internaltional workshop of 

statistical MT (WMT). This chapter contains the submitted metrics and the official 

results in the shared tasks. 

Chapter Seven is the latest development of quality estimation (QE) for MT. It 

introduces the difference of QE and traditional MT evaluations. This chapter also 

mentions our designed methods in the QE tasks.  

Chapter Eight draws the conclusion and future work of this thesis.  
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CHAPTER 2: MACHINE TRANSLATION EVALUATIONS 

In this chapter, we first introduce the human judgment methods for MT; then we 

introduce the existing automatic evaluation metrics; finally, it is the evaluation criteria 

for MT evaluation.White (1995) proposes the concept of Black box evaluation. Black 

Box evaluation measures the quality of a system based solely upon its output, without 

respect to the internal mechanisms of the translation system. The coordinate 

methodology with it is the Glass Box evaluation, which measures the quality of a 

system based upon internal system properties. In this work, we mainly focus on the 

black box MT evaluation. 

2.1 Human Assessment Methods for MT 

This section introduces the human evaluation methods for MT, sometimes called as 

the manual judgments. We begin with the traditional human assessment methods and 

end with the advanced human assessment methods. 

2.1.1 Traditional Manual Judgment Methods 

The traditional human assessments include intelligibility, fidelity, fluency, adequacy, 

and comprehension, etc. There are also some further developments of these methods. 

The earliest human assessment methods for MT can be traced back to around 1966, 

which includethe intelligibility, measuring how understandable the sentence is, and 

fidelity, measuring how much information the translated sentence retains as compared 

to the original, used by the automatic language processing advisory committee 

(ALPAC) (Carroll, 1966aand1966b). ALPAC was established in 1964 by the US 
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government to evaluate the progress in computational linguistics in general and 

machine translation.The requirement that a translation be intelligible means that as far 

as possible the translation should be read as normal, well-edited prose and be readily 

understandable in the same way that such a sentencewould be understandable if 

originally composed in the translation language. The requirement that a translation be 

of high fidelity or accuracy includes that the translation should as little as possible 

twist, distort, or controvert the meaning intended by the original.  

On the other hand, fidelity is measured indirectly, “informativeness” of the original 

relative to the translation. The translated sentence is presented, and after reading it 

and absorbing the content, the original sentence is presented. The judges are asked to 

rate the original sentence on informativeness.The fidelity is measured on a scale of 0-

to-9 spanning from less information, not informative at all, no really new meaning 

added, a slightly different “twist” to the meaning on the word level, a certain amount 

of information added about the sentence structure and syntactical relationships, 

clearly informative, very informative, to extremely informative. 

Thanks to the development of computer technology in 1990s, the machine translation 

developed fast and the human assessment methods also did around the 1990s. As part 

of the Human Language Technologies Program, the Advanced Research Projects 

Agency (ARPA) created the methodology to evaluate machine translation systems 

using the adequacy, fluency and comprehension (Church et al., 1991) as the 

evaluation criteria in MT evaluation campaigns for the full automatic MT systems 

(FAMT) (White et al., 1994; White, 1995). All the three components are plotted 

between 0 and 1 according to the formulas (White, 1995): 

                         (2-1) 
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                                                  (2-2) 

                                                   (2-3) 

The evaluator is asked to look at each fragment, usually less than a sentence in length, 

delimited by syntactic constituent and containing sufficient information, and judge the 

adequacy on a scale 1-to-5, and the results are computed by averaging the judgments 

over all of the decisions in the translation set and mapped onto a 0-to-1 scale. 

Adequacy is similar to the fidelity assessment used by ALPAC. 

The fluency evaluation is compiled with the same manner as for the adequacy except 

for that the evaluator is to make intuitive judgments on a sentence by sentence basis 

for each translation.The evaluators are asked to determine whether the translation is 

good English without reference to the correct translation. The fluency evaluation is to 

determine whether the sentence is well-formed and fluent in context. 

The modified comprehension develops into the “Informativeness”, whose objective is 

to measure a system’s ability to produce a translation that conveys sufficient 

information, such that people can gain necessary information from it. Developed from 

the reference set of expert translations, six questions have six possible answers 

respectively including “none of above” and “cannot be determined”. The results are 

computed as the number of right answers for each translation, averaged for all outputs 

of each system and mapped into a 0-to-1 scale. 

There are some further developments of the above manual judgments with some 

examples as below. 

Linguistics Data Consortium (LDC, 2005) develops two five-point-scales 

representing fluency and adequacy for the annual NIST Machine Translation 

Evaluation Workshop, which become the widely used methodology when manually 
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evaluating MT is to assign values, e.g. utilized in the WMT workshops (Koehn and 

Monz, 2006; Callison-Burch et al., 2007) and IWSLP evaluation campaigns (Eck and 

Hori, 2005; Paul et al., 2010). 

Table 2-1: Fluency and Adequacy Criteria. 

Fluency Adequacy 

Score Meaning Score Meaning 

1 Incomprehensible 1 None 

2 Disfluent English 2 Little information 

3 Non-Native English 3 Much information 

4 Good English 4 Most information 

5 Flawless English 5 All information 

 

The five point scale for adequacy indicates howmuch of the meaning expressed in the 

reference translation is also expressed in a hypothesis translation; the second five 

point scale indicates how fluent the translation is, involving both grammatical 

correctness and idiomatic word choices. When translating into English the values 

correspond to the Table 2-1. 

Other related works include Bangalore et al. (2000) and Reeder (2004), Callison-

Burch et al. (2007), Przybocki et al. (2008), Specia et al. (2011), Roturierand 

Bensadoun (2011), etc. 

2.1.2 Advances of Human Assessment Methods 

The advanced manual assessments include task oriented method, extended criteria, 

binary system comparison, utilization of post-editing and linguistic tools, and online 

manual evaluation, etc. 

White and Taylor (1998) develop a task-oriented evaluation methodology for 

Japanese-to-English translation to measure MT systems in light of the tasks for which 



9 

 

their output might be used. They seek to associate the diagnostic scores assigned to 

theoutput used in the DARPA evaluation with a scale of language-dependent tasks 

suchas scanning, sorting, and topic identification. 

King et al. (2003) extend a large range of manual evaluation methods for MT 

systems,which, in addition to the early talked accuracy, include suitability, whether 

even accurate results are suitable in the particular context in which the system is to be 

used; interoperability, whether with other software or with hardware platforms; 

reliability, i.e. don’t break down all the time or take a long time to run again after 

breaking down; usability, easy to get the interfaces, easy to learn and operate, and 

looks pretty; efficiency, when needed, keep up with the flow of dealt documents; 

maintainability, being able to modify the system in order to adapt it to particular users; 

and portability, one version of a system can be replaced by a new one. 

Based on the ideas that the final goal of most evaluations is to rank the different 

systems and human judge can normally choose the best one out of two translations, 

Vilar et al. (2007) design a novel human evaluation scheme by the direct comparison 

of pairs of translation candidates. The proposed method has lower dependencies on 

extensive evaluation guidelines and typically focuses on the ranking of different MT 

systems. 

A measure of quality is to compare translation from scratch and post-editing the result 

of an automatic translation. This type of evaluation is however time consuming and 

depends on the skills of the translator and post-editor. One example of a metric that is 

designed in such a manner is the human translation error rate (HTER) (Snover et al., 

2006), based on the number of editing steps, computing the editing steps between an 

automatic translation and a reference translation. Here, a human annotator has to find 

the minimum number of insertions, deletions, substitutions, and shifts to convert the 

system output into an acceptable translation. HTER is defined as the number of 

editing steps divided by the number of words in the acceptable translation. 
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Naskar et al. (2011) describean evaluation approach DELiC4MT, diagnostic 

evaluation using linguistic checkpoints for MT, to conduct the MT evaluation with a 

flexible framework, which is experienced with three language pairs from German, 

Italian and Dutch into English. It makes use of many available component and 

representation standards, e.g. the GIZA++ POS taggers and word aligner (Och and 

Ney, 2003), public linguistic parsing tool, the KYOTO Annotation Format (Bosma et 

al., 2009) to represent textual analysis, and the Kybots (Vossen et al.,2010) to define 

the evaluation targets (linguistic checkpoint). The diagnostic evaluation scores reveal 

that the rule-based systems Systran and FreeTranslation are not far behind the SMT 

systems Google Translate and Bing Translator, and show some crucial knowledge to 

the MT developers in determining which linguistic phenomena their systems are good 

at dealing with. 

Federmann (2012) describes Appraise, an open-source toolkit supporting manual 

evaluation of machine translation output. The system allows collecting human 

judgments on translation outputandimplementing annotation tasks such as 1) quality 

checking, 2) translation ranking, 3) error classification, and 4) manual post-editing. It 

features an extensible, XML-based format for import/export and can be easily adapted 

to new annotation tasks. Appraise also includes automatic computation of inter-

annotator agreements allowing quick access to evaluation results. 

Other related works include Miller and Vanni (2005), Bentivogli et al. (2011), Paul et 

al. (2012), etc. 

2.2 Automatic Evaluation Metrics for MT 

Manual evaluation suffers some disadvantages such as time-consuming, expensive, 

not tunable, and not reproducible. Some researchers also find that the manual 

judgments sometimes result in low agreement (Callison-Burch et al., 2011). For 
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instance, in the WMT 2011 English-Czech task, multi-annotator agreement kappa 

value is very low, and even the same strings produced by two systems are ranked 

differently each time by the same annotator. Due to the weaknesses in human 

judgments, automatic evaluation metrics have been widely used for machine 

translation. Typically, they compare the output of machine translation systems against 

human translations but there are also some metrics that do not use the reference 

translation. Common metrics measure the overlap in words and word sequences, as 

well as word order and edit distance (Cherry, 2010). Advanced metrics also take 

linguistic features into account such as syntax, semantics, e.g. POS, sentence structure, 

textual entailment, paraphrase, synonyms and named entities, and language models. 

2.2.1 Metrics Based on Lexical Similarity 

This section discusses the automatic MT evaluation metrics employing the lexical 

similarity including the factors of edit distance, precision, recall, and word order. 

Some of the metrics also employ the n-gram co-occurrence (Doddington, 2002) 

information and others use the unigram matching only. Some metrics mentioned in 

this section also utilize the linguistic features. 

2.2.1.1 Edit Distance Metrics 

By calculating the minimum number of editing steps to transform output to reference, 

Su et al. (1992) introduce the word error rate (WER) metric from speech recognition 

into MT evaluation. This metric takes word order into account, and the operations 

include insertion (adding word), deletion (dropping word) and replacement (or 

substitution, replace one word with another) using the Levenshtein distance, the 
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minimum number of editing steps needed to match two sequences.The measuring 

formula is shown as below whose value ranges from 0 (the best) to 1 (the worst). 

                                                    (2-4) 

Because WER is to compare the raw translation output of a MT system with the final 

revised version that is used directly as a reference, this method can reflect real quality 

gap between the system performance and customer expectation. The Multi-reference 

WER is later defined in (Nießen et al., 2000). They computean “enhanced” WER as 

follows: a translation is compared to all translations that have been judged “perfect” 

and the most similar sentence is used for the computation of the edit distance.  

One of the weak points of the WER is the fact that word ordering is not taken into 

account appropriately.The WER scores very low when the word order of system 

output translation is “wrong” according to the reference. In the Levenshtein distance, 

the mismatches in word order require the deletion and re-insertion of the misplaced 

words.However, due to the diversity of language expression, some so-called “wrong” 

order sentences by WER also prove to be good translations. To address this problem 

in WER, the position-independent word error rate (PER) (Tillmann et al., 1997) 

ignores word order when matching output and reference.Without taking into account 

of the word order, PER counts the number of times that identical words appear in both 

sentences. Depending on whether the translated sentence is longer or shorter than the 

reference translation, the rest of the words are either insertions or deletions. PER is 

guaranteed to be less than or equal to the WER. 

                                                                   (2-5) 
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                                                (2-6) 

where            means the number of words that appear in the reference but not in 

the output, and                  means the difference value of the              

and                 when the output is longer. 

Another way to overcome the unconscionable penalty on word order in the 

Levenshtein distance is adding a novel editing step that allows the movement of word 

sequences from one part of the output to another. This is something a human post-

editor would do with the cut-and-paste function of a word processor. In this light, 

Snover et al. (2006) design the translation edit rate (TER) metric that is also based on 

Levenshtein distance but adds block movement (jumping action) as an editing step. 

The weakness is that finding the shortest sequence of editing steps is a 

computationally hard problem. 

Other related researches using the edit distances as features include (Akiba, et al., 

2001), (Akiba, et al., 2006), (Leusch et al., 2006), TERp (Snover et al., 2009), Dreyer 

and Marcu (2012), and (Wang and Manning, 2012a), etc. 

2.2.1.2 Precision Based Metrics 

Precision is a widely used criterion in the MT evaluation tasks. For instance, if we use 

the          to specify the number of correct words in the output sentence and the         as the total number of the output sentence, then the precision score of this 

sentence can be calculated by their quotient value. 

                           (2-7) 

The commonly used evaluation metric BLEU (bilingual evaluationunderstudy) 

(Papineni et al., 2002) is based on the degree of n-gram overlapping between the 
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strings of words produced by the machine and the human translation references at the 

corpus level. BLEU computes the precision for n-gram of size 1-to-4 with the 

coefficient of brevity penalty. The theory under this design is that if most of the 

outputs are right but with too short output (e.g. many meanings of the source 

sentences lost), then the precision value may be very high but this is not a good 

translation; the brevity-penalty coefficient will decrease the final score to balance this 

phenomenon.  

                        ∑                     (2-8) 

                {                                (2-9) 

where  is the total length of candidate translation corpus (the sum of sentences’ 

length), and   refers to the sum of effective reference sentence length in the corpus. 

The effective sentence means that if there are multi-references for each candidate 

sentence, then the nearest length as compared to the candidate sentence is selected as 

the effective one.  

The n-gram matching of candidate translation and reference translation is first 

performed at sentence level. The unigram matching is designed to capture the 

adequacy and the n-gram matching is to achieve the fluency evaluation. Then the 

successfully matched n-gram numbers are added sentence by sentence and the n-gram 

precisions and brevity penalty values in the formula are calculated at the corpus level 

instead of sentence level.  

BLEU is now still one of the commonly used metrics by researchers to show their 

improvements in their researches including the translation quality and evaluation 

metrics. For example, Nakov and Ng (2012) show their improved language model on 

machine translation quality for resource-poor language by the gaining of up to several 

points of BLEU scores; Sanchez-Martınez and Forcada (2009) describe a method for 

the automatic inference of structural transfer rules to be used in a shallow-transfer MT 
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system from small parallel corpora with the verifying metrics TER and BLEU; Li et al. 

(2011) propose a feedback selecting algorithm for manually acquired rules employed 

in a Chinese to English MT system stating the improvement of SMT quality by 17.12% 

and by 5.23 in terms ofcase-insensitive BLEU-4 score over baseline. Actually, BLEU 

has a wider applicability than just MT. Alqudsi et al. (2012) extend its use to evaluate 

the generation of natural language and the summarization of systems. 

In the BLEU metric, the n-gram precision weight    is usually selected as uniform 

weight    . However, the 4-gram precision value is usually very low or even zero 

when the test corpus is small. Furthermore, the geometric average results in 0 score 

whenever one of the component n-grams scores is 0. To weight more heavily those n-

grams that are more informative, Doddington (2002) proposes the NIST metric with 

the information weight added. 

          ቀ                                                  ቁ (2-10) 

Furthermore, he replace the geometric mean of co-occurrences with the arithmetic 

average of n-gram counts, extend the n-gram into 5-gram (N=5), and select the 

average length of reference translations instead of the nearest length. The arithmetic 

mean ensures that the co-occurrence for different n-gram can be weighted. 

      ∑ {∑                                 ∑                         }     {     [   (        ̅̅ ̅̅ ̅̅   )]}     (2-11) 

where       means the words sequence,     ̅̅ ̅̅ ̅̅  is the average number of words in a 

reference translation, averaged over all reference translations. The experiments show 

that NIST provides improvement in score stability and reliability, and higher 

correlation with human adequacy judgments than BLEU on four languages, Chinese, 

French, Japanese and Spanish. However, NIST correlates lower with the human 

Fluency judgments than BLEU on the other three corpora except for Chinese. 
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Combining BLEU with weights of statistical salience from vector space model 

(Babych et al., 2003), which is similar to TF.IDF score (SaltonandLesk, 1968), 

(Babych, 2004) and (Babych and Hartley, 2004aand2004b) describe an automated 

MT evaluation toolkit weighted N-gram model (WNM) and implement a rough model 

of legitimate translation variation (LTV). The method has been tested by correlation 

with human scores on DARPA 94 MT evaluation corpus (White et al, 1994). 

Other research works based precision include Liu and Gildea (2007 and 2006), etc. 

2.2.1.3 Recall Based Metrics 

Recall is another crucial criterion in the MT evaluation. For instance, if the            means the number of words in the reference sentence, and the          

also specify the number of correct words in the output sentence, then the recall value 

is calculated as: 

                           (2-12) 

Different with precision criterion, which reflects the accuracy of the system output, 

recall value reflects the loyalty of the output to the reference (or input) (Melamed et 

al., 2003). 

ROUGE (Lin and Hovy 2003; Lin 2004a) is a recall-oriented automated evaluation 

metric, which is initially developed for summaries. Automated text summarization has 

drawn a lot of interest in the natural language processing and information retrieval 

communities. A series of workshops on automatic text summarization (WAS, 2002) 

are held as special topic sessions in ACL. Following the adoption by the machine 

translation community of automatic evaluation using the BLEU/NIST scoring process, 

Lin (2004a) conducts a study of a similar idea for evaluating summaries. The 

experiments show that automatic evaluation using unigram co-occurrences, i.e. 
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ROUGE, between summary pairs correlates surprising well with human evaluations, 

based on various statistical metrics; on the other hand, direct application of the BLEU 

evaluation procedure does not always give good results. They also explore the effect 

of sample size in (Lin, 2004b) and apply the ROUGE into automatic machine 

translation evaluation in the work (Lin and Och, 2004a and 2004b). Furthermore, Lin 

and Och (2004) introduce a family of ROUGE including three measures, of which 

ROUGE-S is a skip bigram F-measure, ROUGE-L and ROUGE-W are measures 

based on the length of the longest common subsequence of the sentences. ROUGE-S 

has a similar structure to the bigram PER and they expect ROUGE-L and ROUGE-

Wto have similar properties to WER. 

Other related works include (Leusch et al., 2006) and (Lavie et al., 2004) that talk 

about the significance of recall values in automatic evaluation of machine translation. 

2.2.1.4 Combination of Precision and Recall 

As mentioned in the precious section of this paper, the precision value reflects the 

accuracy, how much proportion of the output is correct, of the automatic MT system 

and the recall value reflects the loyalty, how much meaning is lost or remained, of the 

output to the inputs, both of which are the crucial criteria to judge the quality of the 

translations. To evaluate the MT quality more reasonable, it is not difficult to think of 

the combination of these two factors. 

F-measure is the combination of precision (P) and recall (R), which is firstly 

employed in the information retrieval and latterly has been adopted by the information 

extraction, MT evaluation and other tasks. Let’ssee a set of formula first. 

     ቀ       ቁ                     
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                  (2-13) 

The variable    measures the effectiveness of retrieval with respect to a user who 

attaches   times as much importance to recall as precision. The effectiveness measure 

(  value) is defined in (van Rijsbergen. 1979). In the effectiveness measure, there is a 

parameter   which sets the trade-off between Precision and Recall. When an equal 

trade-off is desired,   is set to 0.5. The first full definition of the F-measure (  ) to 

evaluation tasks of information extraction technology was given by (Chinchor, 1992) 

in the fourth message understanding conference (MUC-4). 

Traditional F-measure or balanced F-score (   score) is exactly the harmonic mean of 

precision and recall (put the same trade-off on precision and recall,    ) (Sasaki 

and Fellow, 2007). 

           (2-14) 

If we bring the precision and recall formula introduced in the precious sections into 

the F-measure, we can get the following inferred formula. 

                                        (2-15) 

                                                          (2-16) 

where          means assign the weight   and   respectively to Precision and Recall. 

We should note that the unigram precision, recall and F-score do not take word order 

into consideration.  

Riezler and Maxwell III(2005) investigate some pitfalls regarding the discriminatory 

power of MT evaluation metrics and the accuracy of statistical significancetests. In a 
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discriminative re-ranking experiment for phrase-based SMT,they showthat the NIST 

metric is more sensitive than BLEU or F-score despite their incorporationof aspects of 

fluency or meaning adequacy into MT evaluation.Pointing out a well-known problem 

of randomly assessing significance in multiple pairwise comparisons, they 

recommend for multiple comparisons of subtle differences to combine the NIST score 

for evaluation with the approximate randomization test for significance testing, at 

stringent rejection levels. 

F-measure is based on the unigram matching and two sentences containing the same 

words always get the same F-measure rating regardless of the correct order of the 

words in the sentence. To eliminate this drawbacks, BLEU and NIST reward the 

correct word order by double-counting all sub-runs, where the factor     is the 

contiguous sequence of matching words in the matching M (M is usually a sentence). 

On the other hand, GTM (general text matching) that is proposed in (Turian et al., 

2003) rewards the contiguous sequences of correctly translated words by the assigned 

weight to the    . GTM is based on the F-measure but adds the maximum match size 

(MMS) information in the calculation of precision and recall. 

         √∑                   
 (2-17) 

They first define the weight of a     to be the             , then they generalize 

the definition of match size as        . The reward is controlled by parameter  . The 

contiguous sequences of words are rewarded and penalized respectively when         and        . When    , the GTM score achieves the same 

performance with the original F-measure. GTM calculates word overlap between a 

reference and a solution, without double counting duplicate words. Furthermore, 

BLEU and NIST are difficult to gain insight from the experiment scores, whereas 

GTM performs the measures that have an intuitive graphical interpretation and can 

facilitate insights into how MT systems might be improved.  
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BLEU is an n-gram precision based metric and performs the exact words matching. 

However, Banerjee and Lavie (2005) find that the recall value plays a more important 

role than precision to obtain higher correlation with human judgments and design a 

novel evaluation metric METEOR. METEOR is based on general concept of flexible 

unigram matching, unigram precision and unigram recall, e.g. unigram F-measure, 

including the match of words that are simple morphological variants of each other by 

the identical stem and words that are synonyms of each other. METEOR assigns 9 

times as importance of recall as precision value, i.e.,         in the F-measure         . 
To measure how well-ordered the matched words in the candidate translation are in 

relation to the human reference, METEOR introduces a novel penalty coefficient by 

employing the number of matched chunks. 

             ቀ                        ቁ 
 (2-18) 

                             (2-19) 

When there are no bigram or longer matches between the candidate translation and 

the reference, there are as many chunks as there are unigram matches. Experiments 

tested on LDC TIDES 2003 Arabic-to-English and Chinese-to-English show that all 

of the individual factors included within METEOR contribute to improved correlation 

with human judgments, which means that METEOR achieve higher correlation score 

than the unigram precision, unigram recall and unigram F-measure, in addition to the 

BLEU and NIST metrics. The enhanced version of METEOR (Lavie and Agarwal, 

2007) also employs the paraphrases, using WordNet a popular ontology of English 

words, into the matching period. The weakness of METEOR is the computationally 

expensive word alignment.  
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Other related works using the combination of precision and recall include Lita et al. 

(2005), Chen and Kuhn (2011), Chen et al. (2012a), etc. 

2.2.1.5 Word Order Utilization 

The right word order places an important role to ensure a high quality translation 

output. However, the language diversity also allows different appearances or 

structures of the sentence. How to successfully achieve the penalty on really wrong 

word order (wrongly structured sentence) instead of on the “correctly” different order, 

the candidate sentence that has different word order with the reference is well 

structured, compared with the reference translation, attracts a lot of interests from 

researchers in the NLP literature. In fact, the Levenshtein distance and n-gram based 

measures contain the word order information. Here, we introduce severale valuation 

metrics that are not based on Levenshtein distance but also take the word order in to 

consideration. 

Featuring the explicit assessment of word order and word choice, Wong and Kit (2008 

and 2009) develop the evaluation metric ATEC, assessment of text essential 

characteristics, which is also based on precision and recall criteria but with the 

designed position difference penalty coefficient attached. The word choice is assessed 

by matching word forms at various linguistic levels, including surface form, stem, 

sound and sense, and further by weighing the informativeness of each word. The word 

order is quantified in term of the discordance of word position and word sequence 

between the translation candidate and its reference. The evaluation on the Metrics 

MATR08, the LDC MTC2 and MTC4 corpora demonstrates an impressive positive 

correlation to human judgments at the segment level.The parameter-optimized version 

of ATEC and its performance is described in (Wong and Kit,2010). 
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Other related works include Zhou et al. (2008), Isozaki et al.(2010), Chen et al. 

(2012b), Popovic (2012), etc. 

2.2.2 Combination with Linguistic Features 

Although some of the previous mentioned metrics employ the linguistic information 

into consideration, e.g. the semantic information synonyms and stemming in 

METEOR, the lexical similarity mainly focus on the exact matches of the surface 

words in the output translation. The advantages of the metrics based on lexical 

similarity are that they perform well in capturing the translation fluency as mentioned 

in (Lo et al., 2012), and they are very fast and low cost. On the other hand, there are 

also some weaknesses, for instance, the syntactic information is rarely considered and 

the underlying assumption that a good translation is one that shares the same lexical 

choices as the reference translations is not justified semantically. Lexical similarity 

does not adequately reflect similarity in meaning. Translation evaluation metric that 

reflects meaning similarity needs to be based on similarity of semantic structure not 

merely flat lexical similarity. 

In this section we focus on the introduction of linguistic features utilized into the 

evaluation including the syntactic features and semantic information. 

2.2.2.1 Syntactic Similarity 

The lexical similarity metrics tend to perform on the local level without considering 

the overall grammaticality of the sentence or sentence meaning. To address this 

problem, the syntax information should be considered. Syntactic similarity methods 

usually employ the features of morphological part-of-speech information, phrase 
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categories or sentence structure generated by the linguistic tools such as language 

parser or chunker. 

POS information 

In grammar, a part of speech, also called a lexical category, is a linguistic category of 

words or lexical items, which is generally defined by the syntactic or morphological 

behaviour of the lexical item. Common linguistic categories of lexical items include 

noun, verb, adjective, adverb, and preposition, etc. To reflect the syntactic quality of 

automatically translated sentences, some researchers employ the POS information into 

their evaluation. 

Using the IBM model one, Popovic et al. (2011) evaluate the translation quality by 

calculating the similarity scores of source and target (translated) sentence without 

using reference translation based on the morphemes, 4-gram POS and lexicon 

probabilities. This evaluation metric MP4IBM1 relies on the large parallel bilingual 

corpus to extract the lexicon probability, precise POS tagger to gain the details about 

verb tenses, cases, number, gender, etc., and other linguistic tool to split words into 

morphemes. The experiments show good performance with English as the source 

language but very weak performance when English is the target language. For 

instance, the correlation score with human judgments is 0.12 and 0.08 respectively on 

Spanish-to-English and French-to-English WMT corpus (Popovic et al., 2011), which 

means very low correlation. 

Other similar works using POS information include the Giménez and Márquez (2007), 

Popovic and Ney (2007), Dahlmeier et al. (2011) and Liu et al. (2010), etc. 

Phrase information 

To measure a MT system’s performance in translating new text-types, such as in what 

ways the system itself could be extended to deal with new text-types, Povlsen, et al. 
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(1998) perform a research work focusing on the study of English-to-Danish machine-

translation system PaTrans (Bech 1997), which covers the domain of petro-

chemicaland mechanical patent documents. The overall evaluation and quality 

criterion is defined in terms ofhow much effort it takes to post-edit the text after 

having been translated by the MT system. A structured questionnaire rating different 

error types is given to the post-editors. In addition to the lexical analysis such as the 

identifying of deverbalnouns, adjectives, homograghs (with different target 

translations) and words (translate into nexus adverbs), the syntactic constructions and 

semantic features are explored with more complex linguistic knowledge, such as the 

identifying of valency and non-valency bond prepositions, fronted adverbial 

subordinate clauses, prepositional phrases, and part-of-speech disambiguation with 

constraint-grammar parser ENGCG (Voutilainen et al., 1992). In order to achieve 

consistency and reliability, the analysis of thenew text-types is automated as far as 

possible. In the experiments, a reference text, known as a good text, is first 

analysedusing the procedure in order to provide a benchmark againstwhich to assess 

the results from analysing the new text-types.After running the evaluation, a 

representative subset of the new text-types is then selectedand translated by a slightly 

revisedversion of the MT system and assessed by the post-editors usingthe same 

questionnaire.Their evaluation is a first stage in an iterative process, in which the suite 

of programs is extended to account for the newly identified gaps in coverage and the 

evaluation of the text type carried out again. 

Assuming that the similar grammatical structures should occur on both source and 

translations, Avramidis et al. (2011) perform the evaluation on source (German) and 

target (English) sentence employing the features of sentence length ratio, unknown 

words, phrase numbers including noun phrase, verb phrase and prepositional phrase. 

The used tools include Probabilistic Context Free Grammar (PCFG) parser (Petrov et 

al., 2006) and statistical classifiers using Naive Bayes and K-Nearest Neighbour 

algorithm. However, the experiment shows lower performance than the BLEU score. 
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The further development of this metric (DFKI) is introduced in (Avramidis, 2012) 

where the features are expanded with verbs, nouns, sentences, subordinate clauses and 

punctuation occurrences to derive the adequacy information. 

Han et al. (2013d) develop a phrase tagset mapping between English and French 

treebanks, and perform the MT evaluation work on the developed universal phrase 

tagset instead of the surface words of the sentences. The experiments on ACL-WMT 

(2011 and 2012) corpora, without using reference translations, yield promising 

correlation scores as compared to the traditional evaluation metrics BLEU and TER. 

Other similar works using the phrase similarity include the (Li et al., 2012) that uses 

noun phrase and verb phrase from chunking and (Echizen-ya and Araki, 2010) that 

only uses the noun phrase chunking in automatic evaluation. 

Sentence structure information 

To address the overall goodness of the translated sentence’s structure, Liu and Gildea 

(2005) employ constituent labels and head-modifier dependencies from language 

parser as syntactic features for MT evaluation. They compute the similarity of 

dependency trees between the candidate translation and the reference translations 

using their designed methods HWCM (Headword Chain Based Metric), STM (sub-

tree metric), DSTM (dependency sub-tree metric), TKM (kernel-based sub-tree metric) 

and DTKM (dependency tree kernel metric). The overall experiments prove that 

adding syntactic information can improve the evaluation performance especially for 

predicting the fluency of hypothesis translations. 

Featuring that valid syntactic variations in the translationcan avoid the unfairly 

penalize, Owczarzak et al. (2007) develop a MT evaluation method using labelled 

dependencies that are produced by a lexical-functional grammar parser in contrast to 

the string-based methods. Similarly, the dependency structure relation is also 
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employed in the feature set by the work (Ye et al., 2007), which performs the MT 

evaluation as a ranking problem. 

Other works that using syntactic information into the evaluation are shown in (Lo and 

Wu, 2011a) and (Lo et al., 2012) that use an automatic shallow parser, (Mutton et al., 

2007) that focuses on the fluency criterion, and (Fishel et al., 2012; Avramidis, 2012; 

Felice and Specia, 2012) that use different linguistic features. 

2.2.2.2 Semantic Similarity 

As contrast to the syntactic information, which captures the overall grammaticality or 

sentence structure similarity, the semantic similarity of the automatic translations and 

the source sentences (or references) can be measured by the employing of some 

semantic features, such as the named entity, synonyms, semantic roles, paraphrase 

and textual entailment. 

Named entity information 

To capture the semantic equivalence of sentences or text fragments, the named entity 

knowledge is brought from the literature of named-entity recognition, also called as 

entity extraction or entity identification, which is aiming to identify and classify 

atomic elements in the text into different entity categories (Marsh and Perzanowski, 

1998; Guo et al., 2009). The commonly used entity categories include the names of 

persons, locations, organizations and times, etc.  

In the MEDAR, an international cooperation between the EU and the Mediterranean 

region on Speech and Language Technologies for Arabic, 2011 evaluation campaign, 

two SMT systems based on Moses (Koehn et al., 2007) are used as baselines 

respectively for English-to-Arabic and Arabic-to-English directions. The Baseline-1 

system adapts SRILM (Stockle, 2002), GIZA++ (Och & Ney, 2003) and a 
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morphological analyzer to Arabic, whereas Baseline-2 system also utilizes OpenNLP
1
 

toolkit to perform named entity detection, in addition to other packagesthat provides 

tokenizing, POS tagging and base phrase chunking for Arabic text (Hamon and 

Choukri, 2011). The experiments show that the low performances from the 

perspective of named entities, many entities are either not translated or not well 

translated, cause a drop in fluency and adequacy. 

Other such related works include Buck (2012),Raybaud et al. (2011), and Finkel et al. 

(2005), etc. 

Synonym information 

Synonyms are used to specify the words that have the same or close meanings. One of 

the widely used synonym database in NLP literature is the WordNet (Miller et al., 

1990; Fellbaum, 1998), which is an English lexical database grouping English words 

into sets of synonyms. WordNet classifies the words mainly into four kinds of part-of-

speech (POS) categories including Noun, Verb, Adjective, and Adverb without 

prepositions, determiners, etc. Synonymous words or phrases are organized using the 

unit of synset. Each synset is a hierarchical structure with the words in different levels 

according to their semantic relations. For instance, the words in upper level belong to 

the words (hypernym) in lower level. 

Utilizing the WordNet and the semantic distance designed by (Wu and Palmer,1994) 

to identify near-synonyms, Wong and Kit (2012) develop a document level evaluation 

metric with lexical cohesion device information. They define the lexical cohesion as 

the content words of synonym and near-synonym that appear in a document. In their 

experiments, the employed lexical cohesion has a weak demand for language resource 

as compared to the other discourse features such as the grammatical cohesion, so it is 

much unaffected by grammatical errors that usually appear in translation outputs. The 

                                                 
1
http://opennlp.apache.org/index.html 

http://opennlp.apache.org/index.html


28 

 

performances on the corpora of MetricsMATR 2008 (Przybockiet al., 2009) and 

MTC-4 (Ma, 2006) show high correlation rate with manually adequacy judgments. 

Furthermore, the metrics BLEU and TER also achieve improved scores through the 

incorporating of the designed document-level lexical cohesion features. 

Other works employing the synonym features include Chan and Ng (2008), Agarwal 

and Lavie (2008), and Liu and Ng (2012), etc. 

Semantic roles 

The semantic roles are employed by some researchers as linguistic features in the MT 

evaluation. To utilize the semantic roles, the sentences are usually first shallow parsed 

and entity tagged. Then the semantic roles used to specify the arguments and adjuncts 

that occur in both the candidate translation and reference translation. For instance, the 

semantic roles introduced by Giménez and Márquez (2007, 2008) include causative 

agent, adverbial adjunct, directional adjunct, negation marker, and predication adjunct, 

etc. In the further development, Lo and Wu (2011a and 2011b) design the metric 

MEANT to capture the predicate-argument relations as the structural relations in 

semantic frames, which is not reflected by the flat semantic role label features in the 

work of (Giménez and Márquez, 2007). Furthermore, instead of using uniform 

weights, Lo, Tumuluru and Wu (2012) weight the different types of semantic roles 

according to their relative importance to the adequate preservation of meaning, which 

is empirically determined. Generally, the semantic roles account for the semantic 

structure of a segment and have proved effective to assess adequacy in the above 

papers. 

Textual entailment 

Textual entailment is usually used as a directive relation between text fragments.If the 

truth of one text fragment TA follows another text fragment TB, then there is a 

directional relation between TA and TB (TB=>TA). Instead of the pure logical or 
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mathematical entailment, the textual entailment in natural language processing (NLP) 

is usually performed with a relaxed or loose definition (Dagan et al., 2005; 2006). For 

instance, according to text fragment TB, if it can be inferred that the text fragment TA 

is most likely to be true then the relationship TB=>TA also establishes. That the 

relation is directive also means that the inverse inference (TA=>TB) is not ensured to 

be true (Dagan and Glickman, 2004).  

To address the task of handling unknown terms in SMT, Mirkin et al. (2009) proposea 

Source-Language entailment model. Firstly they utilize the source-language 

monolingual models and resources to paraphrase the source text prior to translation. 

They further present a conceptual extension to prior work by allowing translations of 

entailed texts rather than paraphrases only. This method is experimented on some 

2500 sentences with unknown terms and substantially increases the number of 

properly translated texts.  

Other works utilizing the textual entailment can be referred to Pado et al. (2009a and 

2009b), Lo and Wu (2011a), Lo et al. (2012), Aziz et al. (2010), and Castillo and 

Estrella (2012), etc. 

Paraphrase features 

Paraphrase is to restatement the meaning of a passage or text utilizing other words, 

which can be seen as bidirectional textual entailment (Androutsopoulos and 

Malakasiotis, 2010). Instead of the literal translation, word by word and line by line, 

used by metaphrase, paraphrase represents a dynamic equivalent. For instance, “He is 

a great man” may be paraphrased as “He has ever done a lot of great things”. Further 

knowledge of paraphrase from the aspect of linguistics is introduced in the works of 

(McKeown, 1979; Meteer and Shaked, 1988; Dras, 1999; Barzilay and Lee, 2003). As 

an example, let’s see the usage of paraphrase and other linguistic features in the 

improvement of TER evaluation metric. 



30 

 

While Translation Edit Rate (TER) metric (Snover 2006) has been shown to correlate 

well with human judgments of translation quality, it has several flaws, including the 

use of only a single reference translation and the measuring of similarity only by exact 

word matches between the hypothesis and the reference (Snover et al., 2011). These 

flaws are addressed through the use of Human-Mediated TER (HTER), but are not 

captured by the automatic metric.To address this problem, Snover et al. (2009a; 

2009b) describea new evaluation metric TER-Plus (TERp). TERp uses all the edit 

operations of TER, Matches, Insertions, Deletions, Substitutions and Shifts, as well as 

three new edit operations, Stem Matches, Synonym Matches (Banerjee and Lavie 

2005)and Phrase Substitutions (Zhou et al., 2006; Kauchak 2006). TERp identifies 

words in the hypothesis and reference that share the same stem using the Porter 

stemming algorithm (Porter, 1980). Two words are determined to be synonyms if they 

share the same synonym set according to WordNet (Fellbaum, 1998). Sequences of 

ghypothesis if that phrase pair occurs in the TERp phrase table.They presenta 

correlation study comparing TERp to BLEU, METEOR and TER, and illustrate that 

TERp can better evaluate translation adequacy. 

Other works using the paraphrase information can be seen in (Owczarzak et al., 2006), 

(Zhou et al., 2006), and (Kauchak and Barzilay, 2006), etc.There are also many 

researchers who combine the syntactic and semantic features together in the MT 

evaluation, such as Peral and Ferrandez (2003), Gimenez and Marquez (2008), Wang 

and Manning (2012b), de Souza et al. (2012), etc. 

2.2.2.3 Language Model Utilization 

The language models are also utilized by the MT and MT evaluation researchers. A 

statistical language model usually assigns a probability to a sequence of words by 

means of a probability distribution. 
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Gamon et al. (2005) propose LM-SVM (language-model, support vector machine) 

method investigating the possibility of evaluating MT quality and fluency at the 

sentence level in the absence of reference translations. They measure the correlation 

between automatically-generated scores and human judgments, and evaluate the 

performance of the system when used as a classifier for identifying highly dysfluent 

and illformed sentences. They show that they can substantially improve the 

correlation between language model perplexity scores and human judgment by 

combining these perplexity scores with class probabilities from a machine-learned 

classifier. The classifier uses linguistic features and is trained to distinguish human 

translations from machine translations. 

There are also some other research works that use the linguistic features, such as 

Wong and Kit (2011), Aikawa and Rarrick (2011),Reeder F. (2006a), etc. 

Generally, the linguistic features mentioned above, including both syntactic and 

semantic features, are usually combined in two ways, either by following a machine 

learning approach (Albrecht and Hwa, 2007; Leusch and Ney, 2009), or trying to 

combine a wide variety of metrics in a more simple and straight forward way, such as 

Giménez and Márquez (2008), Specia and Giménez (2010), and Comelles et al. 

(2012), etc. 

2.2.3 Combination of Different Metrics 

This sub-section introduces some metrics that are designed by the combination, or 

offering a framework for the combination of existing metrics. 

Adequacy-oriented metrics, such as BLEU, measure n-gram overlap of MT outputs 

and their references, but do not represent sentence-level information. In contrast, 

fluency-oriented metrics, such as ROUGE-W, compute longest common sub-
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sequences, but ignore words not aligned by the longest common sub-sequence. To 

address these problems, Liu and Gildea (2006) describea new metric based on 

stochastic iterative string alignment (SIA) for MT evaluation, which achieves good 

performance by combining the advantages of n-gram-based metrics and loose-

sequence-based metrics. SIA uses stochastic word mapping to allow soft or partial 

matches between the MT hypotheses and the references. It works especially well in 

fluency evaluation. This stochastic component is shown to be better than PORTER-

STEM and WordNet in their experiments. They also analyse the effect of other 

components in SIA and speculate that they can also be used in other metrics to 

improve their performance. 

Other related works include Gimenez and Amigo (2006), Parton et al. (2011), 

Popovic (2011), etc. 

2.3 Evaluation Methods of MT Evaluation 

This section introduces the evaluation methods for the MT evaluation. They include 

the statistical significance, evaluation of manual judgments, correlation with manual 

judgments, etc. 

2.3.1 Statistical Significance 

If different MT systems produce translations with different qualities on a data set, 

how can we ensure that they indeed own different system quality? To explore this 

problem, Koehn (2004) performs a research work on the statistical significance test 

for machine translation evaluation. The bootstrap resampling method is used to 

compute the statistical significance intervals for evaluation metrics on small test sets. 

Statistical significance usually refers to two separate notions, of which one is the p-
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value, the probability that the observed data will occur by chance in a given single 

null hypothesis, and another is the Type I error, false positive, rate of a statistical 

hypothesis test, the probability of incorrectly rejecting a given null hypothesis in 

favour of a second alternative hypothesis (Hald, 1998). The fixed number 0.05 is 

usually referred to as the significance level, i.e. the level of significance. 

2.3.2 Evaluating the Human Judgments 

Since the human judgments are usually trusted as the golden standards that the 

automatic evaluation metrics should try to approach, the reliability and coherence of 

human judgments is very important. Cohen’s kappa agreement coefficient is one of 

the commonly used evaluation methods (Cohen,1960). For the problem in nominal 

scale agreement between two judges, there are two relevant quantities: 

                                                       (2-20) 

                                                                     (2-

21) 

The test of agreement comes then with regard to the      of the units of which the 

hypothesis of no association would predict disagreement between the judges. The 

coefficient   is simply the proportion of chance-expected disagreements which do not 

occur, or alternatively, it is the proportion of agreement after chance agreement is 

removed from consideration: 

             (2-22) 

where       represents the proportion of the cases in which beyond-chance 

agreement occurs and is the numerator of the coefficient. The interval of 0-to-0.2 is 
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slight, 0.2-to-0.4is fair, 0.4-to-0.6 is moderate, 0.6-to-0.8 is substantial,and 0.8-to-1.0 

is almost perfect (Landisand Koch, 1977). 

In the annual ACL-WMT workshop (Callison-Burch et al., 2007, 2008, 2009, 2010, 

2011, 2012), they also use this agreement formula to calculate the Inter- and Intra-

annotator agreement inthe ranking task to ensure their process as a valid evaluation 

setup. To ensure they have enough data to measure agreement, they occasionally 

show annotator items that are repeated from previously completed items. These 

repeated items are drawn from ones completed by the same annotator and from 

different annotators. They measure pairwise agreement among annotators using 

following formula: 

                   (2-23) 

where P(A) is the proportion of times that the annotators agree, and P(E) is the 

proportion of times that they will agree by chance. The agreement value k has a value 

of at most 1, higher rates of agreement resulting in higher k value. 

2.3.3 Correlating the Manual and Automatic Evaluation 

This section introduces the correlation criteria that are usually utilized to measure the 

closeness between manual judgments and automatic evaluations. They cover the 

Pearson correlation coefficient, Spearman correlation coefficient, and Kendall’s  . 

2.3.3.1 Pearson Correlation Coefficient 

Pearson correlation coefficient (Pearson, 1900) is usually used as the formula to 

calculate the system-level correlations between automatic evaluation results and 

human judgments. 
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Pearson's correlation coefficient when applied to a population is commonly 

represented by the Greek letter   (rho). The correlation between random variables X 

and Y denoted as     is measured as follow (Montgomery and Runger,1994; 

Montgomery and Runger, 2003). 

             √                 (2-24) 

Because the standard deviations of variable X and Y are higher than 0(     and     ), if the covariance    between X and Y is positive, negative or zero, the 

correlation score     between X and Y will correspondingly result in positive, 

negative or zero, respectively. Forany two random variables, the correlation score of 

them varies in the following interval:  

          (2-25) 

The correlation just scales the covariance by the standard deviation of each variable. 

Consequently the correlation is a dimensionless quantity that can be used to compare 

the linear relationships between pairs of variables in different units.In the above 

formula, the covariance between the random variables X and Y, denoted as cov(X, Y) 

or    , is defined as: 

      [            ]             (2-26) 

To learn the above formula, let’s first see a definition: a discrete random variable is a 

random variable with a finite (or countably infinite) range; a continuous random 

variable is a random variable with an interval (either finite or infinite) of real numbers 

for its range. The mean or expected value of the discrete random variable X, denoted 

as    or E(X), is  

         ∑        (2-27) 

A random variable X has a discrete uniform distribution if each of the n values in its 

range, say           , has equal probability. Then, 
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              ∑        (2-28) 

The variance of discrete random variable X, denoted as     or V(X), is  

                   ∑             (2-29) 

       ∑            ∑                 (2-30) 

The standard deviation of X is    √   . 

Finally, based on a sample of paired data (X, Y) as        ,         , the Pearson 

correlation coefficient is: 

     ∑                   √∑             √∑ (     )      (2-31) 

where    and    specify the means of discrete random variable X and Y respectively. 

As the supplementary knowledge, we also list the mean and variance formula for the 

continuous random variable X. The mean or expected value of continuous variable X 

is 

        ∫            (2-32) 

The variance of continuous variableX is 

         ∫                 ∫                (2-33) 

2.3.3.2 Spearman Correlation Coefficient 

In order to distinguish the reliability of different MT evaluation metrics, Spearman 

rank correlation coefficient (a simplified version of Pearson correlation coefficient)   

is also commonly used to calculate the system level correlation, especially for recent 
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years WMT task (Callison-Burch et al., 2011, 2010, 2009, 2008). When there are no 

ties, Spearman rank correlation coefficient, which is sometimes specified as (rs) is 

calculated as: 

           ∑                (2-34) 

where   is the difference-value (D-value) between the two corresponding rank 

variables     –     in  ⃑                and  ⃑⃑               describing the 

system  , and n is the number of variables in the system. 

In the MT evaluation task, the Spearman rank correlation coefficient method is 

usually used by the authoritative ACL WMT to evaluate the correlation of MT 

evaluation metrics with the human judgments. There are some problems existing in 

this method. For instance, let two MT evaluation metrics MA and MB with their 

evaluation scores   ⃑⃑⃑⃑ ⃑⃑⃑                   and   ⃑⃑⃑⃑ ⃑⃑ ⃑                   respectively 

reflecting the MT systems  ⃑⃑⃑            .  
Before the calculation of correlation with human judgments, they will be changed as 

  ⃑⃑⃑⃑ ⃑⃑ ⃑̆          and   ⃑⃑⃑⃑ ⃑⃑ ⃑̆          with the same rank sequence using Spearman 

method. Thus, the two evaluation systems will get the same correlation score with 

human judgments. But the two metrics reflect different results indeed: MA gives the 

outstanding score (0.95) to    system and puts very low scores (0.50 and 0.45) on 

other two systems   and   ; on the other hand, MB thinks the three MT systems 

have similar performances (scores from 0.74 to 0.77). This information is lost using 

the Spearman rank correlation methodology. 
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2.3.3.3 Kendall’s τ 

Kendall’s   (Kendall, 1938) has been used in recent years for the correlation between 

automatic order and reference order (Callison-Burch et al., 2012, 2011, 2010). It is 

defined as: 

                                                        (2-35) 

The latest version of Kendall’s   is introduced in (Kendall and Gibbons, 1990). 

Lebanon and Lafferty (2002) give an overview work for Kendall’s   showing its 

application in calculating how much the system orders differ from the reference order. 

More concretely, Lapata (2003) proposes the use of Kendall’s  , a measure of rank 

correlation, estimating the distance between a system-generated and a human-

generated gold-standard order 

Kendall’s   is less widely used than Spearman’s rank correlation coefficient (  ). The 

two measures have different underlying scales, and, numerically, they are not directly 

comparable to each other. Siegel and Castellan (1988) express the relationship of the 

two measures in terms of the inequality: 

                  (2-36) 

More importantly, Kendall’s   and Spearman’s rank correlation coefficient    have 

different interpretations. Kendall’s   can be interpreted as a simple function of the 

probability of observing concordant and discordant pairs (Kerridge 1975). In other 

words, it is the difference between the probability, that in the observed data two 

variables are in the same order, versus the probability, that they are in different orders. 

On the other hand, no simple meaning can be attributed to Spearman’s rank 

correlation coefficient   . The latter is similar to the Pearson correlation coefficient 
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computed for values consisting of ranks. It is difficult to draw any meaningful 

conclusions with regard to information ordering based on the variance of ranks. In 

practice, while both correlations frequently provide similar answers, there 

aresituations where they diverge. For example, the statistical distribution of   

approaches the normal distribution faster than    (Kendall and Gibbons, 1990), thus 

offering an advantage for small to moderate sample studies with fewer data points. 

This is crucial when experiments are conducted with a small number of subjects or 

test items. Another related issue concerns sample size. Spearman’s rank correlation 

coefficient is a biased statistic (Kendall and Gibbons, 1990). The smaller the sample, 

the more    diverges from the true population value, usually underestimating it. In 

contrast, Kendall’s   does not provide a biased estimate of the true correlation. 
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CHAPTER 3: LEPOR – PROPOSED MODEL 

The weaknesses of Manual judgments are apparent, such as time consuming, 

expensive, unrepeatable, and low agreement sometimes (Callison-Burch et al., 2011). 

On the other hand, there are also some weaknesses of existing automatic MT 

evaluation methods. Firstly, they usually show good performance on certain language 

pairs (e.g. EN as target) and weak on others (e.g. EN as source). This is partly due to 

the rich English resource people can utilize to aid the evaluation, such as dictionary, 

synonym, paraphrase, etc. it may be also due to the different characteristics of the 

language pairs and they need different strategies. For instance, TER metric (Snover et 

al., 2006) achieved 0.89 (ES-EN) vs 0.33 (DE-EN) correlation score with human 

judgments on WMT-2011 tasks. Secondly, some metric rely on many linguistic 

features for good performances. This makes it not easy to repeat the experiment by 

other researchers, and it also makes the metric difficult to achieve generalization for 

other languages. For instance, MP4IBM1 metric (Popovic et al., 2011) utilizes large 

bilingual corpus, POS taggers, linguistic tools for morphemes/ POS / lexicon 

probabilities, etc. This metric can show good performance on its focused language 

pairs (English-German), but low performance on others. Thirdly, some metrics utilize 

incomprehensive factors. For example, the state-of-the-art BLEU metric (Papineni et 

al., 2002) is based on n-gram precision score only. Some researchers also held the 

opinion that the higher BLEU score is not necessarily indicative of better translation 

(Callison-Burch et al., 2006). 
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To address some of the existing problems in the automatic MT evaluation metrics, in 

this chapter, we introduce our designed models, including the augmented factors and 

the metrics (Han et al., 2012). 

3.1 Enhanced Factors 

In this section, we introduce the three enhanced factors of our methods including 

enhanced length penalty, n-gram position difference penalty, and n-gram precision 

and recall. 

3.1.1 Length Penalty 

In the widely used metric BLEU (Papineni et al., 2002), it utilizes a brevity penalty 

for shorter sentence; however, the redundant (or longer) sentences are not penalized 

properly. To achieve a penalty score for the MT system, which tends to yield 

redundant information, we design a new version of the sentence length penalty factor, 

the enhanced length penalty   . 

In the Equation,    means Length penalty, which is defined to embrace the penalty 

for both longer and shorter system outputs compared with the reference translations, 

and it is calculated as: 

    {                                                   (3-1) 

where  and   mean the sentence length of output candidate translation and reference 

translation respectively. When the output length of sentence is equal to that of the 

reference one,    will be one which means no penalty. However, when the output 
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length   is larger or smaller than that of the reference one,    will be little than one 

which means a penalty on the evaluation value of LEPOR. And according to the 

characteristics of exponential function mathematically, the larger of numerical 

difference between   and , the smaller the value of    will be.  

BLEU is measured at corpus level, which means the penalty score is directly the 

system level score, with   and  referring to the length of corpus level output and 

reference translations. Our length penalty score is measured in different way, first by 

sentence level. 

3.1.2 N-gram Position Difference Penalty 

The word order information is introduced in the research work of (Wong and Kit, 

2008); however, they utilized the traditional nearest matching strategy and did not 

give a formulized measuring function. 

We design a different way to measure the position different, i.e. the n-gram position 

difference penalty factor, which means our matching is based on n-gram alignment 

considering neighbour information of the candidate matches. Furthermore, we give 

clear formulized measuring function.To measure this factor, there are mainly two 

stages, which include n-gram word alignment and score measuring. Let’s see it step 

by step as below. 

The n-gram position difference penalty,          ,is defined as: 

                 (3-2) 

where     means n-gram position difference penalty. The           value is 

designed to compare the words order in the sentences between reference translation 

and output translation. The           value is normalized. Thus we can take all MT 

systems into account whose effective    value varies between 0 and 1, and when 
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 equals 0, the           will be 1 which represents no penalty and is quite 

reasonable. When the     increases from 0 to 1, the          value decreases 

from 1 to    , which is based on the mathematical analysis. Consequently, the final 

LEPOR value will be smaller. According to this thought, the     is defined as: 

                  ∑                      (3-3) 

 

Figure 3-1: N-gram Word Alignment Algorithm. 

where              represents the length of system output sentence and     means 

the n-gram position  -value (difference value) of aligned words between output and 

reference sentences. Every word from both output translation and reference should be 

aligned only once (one-to-one alignment). Case (upper or lower) is irrelevant. When 
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there is no match, the value of     will be zero as default for this output translation 

word. 

To calculate the NPD value, there are two steps: aligning and calculating. To begin 

with, the Context-dependent n-gram Word Alignment task: we take the context-

dependent factor into consideration and assign higher priority on it, which means we 

take into account the surrounding context (neighbouring words) of the potential word 

to select a better matching pairs between the output and the reference. If there are both 

nearby matching or there is no matched context around the potential words pairs, then 

we consider the nearest matching to align as a backup choice. The alignment direction 

is from output sentence to the reference translations. Assuming that    represents the 

current word in output sentence and       (or      ) means the  th word to the 

previous       or following      . While    (or      ) means the words 

matching  in the references, and       (or        ) has the similar meaning as      

but in reference sentence.          is the position difference value between the 

matching wordsin outputs and references. The operation process and pseudo code of 

the context-dependent n-gram word alignment algorithm are shown in Figure 1 (with 

“→” as the alignment). Taking 2-gram (n = 2) as an example, let’s see explanation in 

Figure 3-1. We label each word with its absolute position, then according to the 

context-dependent n-gram method, the first word “A” in the output sentence has no 

nearby matching with the beginning word “A” in reference, so it is aligned to the fifth 

word “a” due to their matched neighbor words “stone”and “on” within one      and 

two      steps respectively away from current position. Then the fourth word “a” in 
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the output will align the first word “A” of the reference due to the one-to-one 

alignment.The alignments of other words in the output are obvious. 

In the second step (calculating step), we label each word with its position number 

divided by the corresponding sentence length for normalization, and then using the Eq. 

(4) to finish the calculation. We also use the example in Figure 6-2 for the     

introduction: 

 

Figure 3-2: N-gram Word Alignment Example. 

 

Figure 3-3: NPD Calculation Example. 

In the example, when we label the word position of output sentence we divide the 

numerical position (from 1 to 6) of the current word by the reference sentence length 

6. Similar way is applied in labeling the reference sentence. After we get the     

value, using the Eq. (3), the values of           can be calculated. 
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When there is multi-references (more than one reference sentence), for instance 2 

references, we take the similar approach but with a minor change. The alignment 

direction isreminded the same (from output to reference), and the candidate 

alignments that have nearby matching words also embrace higher priority. If the 

matching words from Reference-1 and Reference-2 both have the nearby matching 

with the output word, then we select the candidate alignment that makes the final     value smaller. See below (also 2-gram) for explanation: 

 

Figure 3-4: N-gram Word Alignment Example with Multi-references. 

The beginning output words “the” and “stone” are aligned simply for the single 

matching. The output word “on” has nearby matching with the word “on” both in 

Reference-1 and Reference-2, due to the words “the” (second to previous) and “a” 

(first in the following) respectively. Then we should select its alignment to the word 

“on” in Reference-1, not Reference-2 for the further reason|     |  |     | and this 

selection will obtain a smaller     value. The remaining two words “a” and “bird” in 

output sentence are aligned using the same principle. 

3.1.3 Harmonic Mean of Precision and Recall 

In the BLEU metric, there is only precision factor without recall. Generally, precision 

and recall are two parallel factors. Precision reflects the probability of how much the 
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output content is correct, while recall reflects the probability of how much of the 

answer is included by the output. So, both of the two aspects are important in 

evaluation. On the other hand, METEOR (Banerjee and Lavie, 2005) puts fixed 

higher weight on recall as compared with precision score. For different language pairs, 

the importance of precision and recall differ. To make a generalized factor for wide 

spread language pairs, we design the tunable parameters for precision and recall, i.e., 

the weighted harmonic mean of precision and recall. 

The weighted harmonic mean of precision and recall (    and   ),                 in the equation, is calculated as: 

                               (3-4) 

where   and   are two parameters we designed to adjust the weight of   (recall) and   (precision). The two metrics are calculated by: 

                           (3-5) 

                               (3-6) 

where            represents the number of aligned (matching) words and marks 

appearing both in translations and references,               and                  specify the sentence length of system output and reference 

respectively (Melamed et al., 2003). 
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3.2 Metrics Scores of Designed Methods 

We name our metric as LEPOR, automatic machine translation evaluation metric 

considering the enhanced Length Penalty, Precision, n-gram Position difference 

Penalty and Recall (Han et al., 2012). To begin with, the sentence level score is the 

simple product value of each factor. 

       ∏             (3-7) 

Then, we design two strategies to measure the system level (document level) scores. 

One is the arithmetic mean of each sentence level score, called as       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. The other 

one       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the product value of system level factors score, which means that we 

first measure the system level factor scores as the arithmetic mean of sentence level 

factor scores, and then the system level LEPOR metric score is the product value of 

system level factors. 

       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅          ∑                        (3-8) 

       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  ∏        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅     (3-9) 

        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅          ∑                           (3-10) 

In this initial version, the designed system level       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ reflects the system level 

metric score, and       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ reflects the system level factors score. 
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CHAPTER 4: IMPROVED MODELS WITH LINGUISTIC FEATURES 

Thischapter introduces our improved model of our metrics, such as the new factors, 

variants of LEPOR, and utilization of concise linguistic features (Han et al., 2013a). 

4.1 New Factors 

To consider more about the content information, we design the new factors including 

n-gram precision and n-gram recall. These two factors are also measured first at 

sentence level, which is different with BLEU. 

Let’s see the n-gram scores. Here, n is the number of words in the block matching. 

                                                (4-1) 

                                            (4-2) 

                                  (4-3) 

Let’s see an example of bigram matching, and it is the similar strategies for the block 

matching with    . 

 

Figure 4-1: N-gram Block Alignment Example. 
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4.2 Variants of LEPOR 

This section introduces two variants of LEPOR metric. The first one is based on 

tunable parameters designed for factor level, and the second one is based on n-gram 

metric score (Han et al., 2013a; Han et al., 2014). 

4.2.1 hLEPOR 

To achieve higher correlation with manual judgments when dealing with special 

language pairs, we design tunable parameters to tune the weights of factors. It is 

achieved by using the weighted harmonic mean again. In this way, we try to seize the 

important characteristics of focused languages. 

Let’s see the formula below. The parameters    ,            and      are the 

weights of three factors respectively. 

                (                                  ) (4-4) 

  ∑       ∑                                                                    (4-5) 

In this version, the system-level scores are also measured by the two strategies 

introduced above. The corresponding formulas are: 

        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅          ∑                         (4-6) 

       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                ̅̅̅̅                      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅         ̅̅ ̅̅ ̅̅   (4-7) 

4.2.2 nLEPOR 

The n-gram metric score is based on the utilization of weighted n-gram precision and 

n-gram recall factors. Let’s see the designed formula, where HPR is measured using 
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weighted n-gram precision and recall formula introduced previously. This variant is 

designed for the languages that request high fluency. 

                          ∑               (4-8) 

        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅          ∑                         (4-9) 

        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅    ̅̅̅̅            ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅       ∑              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (4-10) 

4.3 Utilization of Linguistic Feature 

The linguistic features have been shown very helpful in many previous researches. 

However, many linguistic features relying on large external data may result in low 

repeatable. In this section, we investigate the part of speech (POS) information in our 

model. We first attach the POS tags of each word or token of the sentences by POS 

tagger or parsing tools, and extract the POS sequence from both the MT output and 

the reference translations. Then, we apply our algorithms on the POS sequence as the 

same way on words sequence. In this way, we gain two different kinds of similarity 

scores, the word level and the POS level. The final metric score will be the weighted 

combination of these two scores. 
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Figure 4-2: N-gram POS Sequence Alignment Example. 

Let’s see an example with the algorithm applied on POS sequences in the figure. 

In this way, some words can be aligned by POS. It sometimes performs as synonym 

information, e.g. the words “say” and “claim” in the example are successful aligned.  

The final scores of our methods using the linguistic features are the combination of 

word level and linguistic level scores: 

                                                   (4-11) 

                ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅             ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   (4-12) 

The          and           are measured using the same algorithm on POS 

sequence and word sequence respectively. 
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CHAPTER 5: EVALUATION 

This chapter introduces the experimental performance of our designed MT evaluation 

methods, including the results of initial metric LEPOR and the enhanced model 

hLEPOR. 

5.1 Experimental Setting 

We first introduce the corpora preparation, the selected state-of-the-art metrics to 

compare, and the evaluation criteria. 

5.1.1 Corpora 

We utilize the standard WMT shared task corpora in our experiments. For the 

development set, we use the WMT 2008 corpora. The development corpora are to 

tune the parameters in our metrics to achieve a higher correlation with manual 

judgments. For the testing corpora, we use the WMT 2011 corpora. 

Both the WMT 2008
2
 and WMT 2011

3
 corpora contain the language pairs of English 

(EN) to other (ES: Spanish, DE: German, FR: French and CS: Czech) and the inverse 

translation direction, i.e. other to English. 

There are 2,028 and 3,003 sentences respectively for each language document in the 

WMT 2008 and WMT 2011 MT testing corpora. The effective number of participated 

MT systems in WMT 2011 for each language pair is shown in the Table 5-1. 

                                                 
2
http://www.statmt.org/wmt08/ 

3
http://www.statmt.org/wmt11/ 
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Table 5-1: Participated MT Systems in WMT 2011. 

English-to-Other Other-to-English 

Language pair MT systems Language pair MT systems 

EN-ES 15 ES-EN 15 

EN-FR 17 FR-EN 18 

EN-DE 22 DE-EN 20 

EN-CS 10 CS-EN 8 

 

5.1.2 Existing Metrics for Comparison 

To compare with our initial version metric, the LEPOR, we selected three state-of-

the-art metrics as comparisons, including precision based metric BLEU(Papineni et al., 

2002), edit distance based metric TER (Snover et al., 2006), and METEOR (version 

1.3) (Denkowski and Lavie, 2011), which used synonym and stemming as external 

linguistic features. See Section 2.2 for detailed introduction of the metrics. 

Furthermore, we also selected two latest metrics the AMBER and MP4IBM1 as 

comparisons. AMBER (Chen and Kuhn, 2011) is a modified version of BLEU, 

attaching more kinds of penalty coefficients and combining the n-gram precision and 

recall. MP4IBM1 (Popovic et al., 2011) is based on morphemes, POS (4-grams) and 

lexicon probabilities, etc. 

To investigate the performance of our improved metric hLEPOR, i.e. the metric with 

more tunable parameters and concise POS as linguistic feature, we added two more 

metrics in the comparison list including ROSE and MPF. This is due to the fact that 

both ROSE (Song and Cohn, 2011) and MPF (Popovic, 2011) metrics also utilized the 

POS information as linguistic feature and they are very related with our work. 
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5.1.3 Evaluation Criteria 

Each year, there is a manual judgment task in the WMT after the participants 

submitted their MT outputs, and we regard the manual judgments as the golden one. 

In this light, we measure the correlation score between manual judgments and 

automatic evaluations. The evaluation criterion we utilized is the widely used system 

level spearman correlation score. See Section 2.3, the evaluation criteria for MT 

evaluation, for detailed formula. 

5.2 Experimental Results 

This section introduces the experiments results of the MT evaluation, including the 

results and initial metric and the results of improved metric. 

5.2.1 Initial MT Evaluation Results 

The MT evaluation results using our initial metric LEPOR are demonstrated in Table 

5-2, the correlation score with human judgments. The        is the arithmetic mean 

of sentence level score, and        is the product value of system level factor 

scores. Please see Section 3.2, i.e. the metric scores, for the detailed metric formula. 

The parameters   and   are tuned to be the value 9 and 1 respectively for all the 

language pairs, except for Czech-to-English with the value 1 and 9. 

The metrics are rankedby their mean (hybrid) performance on the eight corpora from 

the best to the worst. It shows that BLEU, AMBER (modified version of BLEU) and 

Meteor-1.3 perform unsteady with better correlation on some translation languages 
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and worse on others, resulting in medium level generally. TER and MP4IBM1 get the 

worst scores by the mean correlation. 

Table 5-2: Spearman Correlation Scores of LEPOR and Others. 

Evaluation system 

Correlation Score with Human Judgment 

other-to-English English-to-other Mean 

Score CZ-EN DE-EN ES-EN FR-EN EN-CZ EN-DE EN-ES EN-FR 

LEPOR-B 0.93 0.62 0.96 0.89 0.71 0.36 0.88 0.84 0.77 

LEPOR-A 0.95 0.61 0.96 0.88 0.68 0.35 0.89 0.83 0.77 

AMBER 0.88 0.59 0.86 0.95 0.56 0.53 0.87 0.84 0.76 

Meteor-1.3-RANK 0.91 0.71 0.88 0.93 0.65 0.30 0.74 0.85 0.75 

BLEU 0.88 0.48 0.90 0.85 0.65 0.44 0.87 0.86 0.74 

TER 0.83 0.33 0.89 0.77 0.50 0.12 0.81 0.84 0.64 

MP4IBM1 0.91 0.56 0.12 0.08 0.76 0.91 0.71 0.61 0.58 

 

The evaluation results also demonstrate that the first simplified version of our metric 

without using external resources yielded three top-one correlation scores on CZ-EN / 

ES-EN / EN-ES language pairs. Furthermore, LEPOR showed robust performance 

across languages, resulting in top one Mean-score 0.77. 

It also releases the information that although the test metrics yield high system-level 

correlations with human judgments on certain language pairs, e.g. all correlations 

above 0.83 on Czech-to-English, they are far from satisfactory by synthetically mean 

scores on total eight corpora, spanning from 0.58 to 0.77 only, and there is clearly a 

potential for further improvement. 

5.2.2 MT Evaluation Results with Improved Methods 

In this improved version hLEPOR, the metric based on factor level weighted 

harmonic mean, with concise linguistic feature, the tuned values of many parameters 
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on the development set are shown in Table 5-3.In the parameters table, the token “(W)” 

and “(POS)” mean this set of parameters are on the word level and extracted POS 

level respectively. The ratio “HPR:ELP:NPP” represents the different weights of three 

main factors in our metric, i.e. the harmonic mean of precision and recall, the 

enhanced length penalty, and the n-gram position difference penalty. The ratio “   ” 

means the weights of recall and precision. The ratio “       ” represents the different 

weights of word level score and the POS level score. The token “N/A” means the POS 

information was not utilized on that language pair, so there is only word level score. 

The testing results, correlation score with manual judgments, are demonstrated in 

Table 5-4. 

Table 5-3: Tuned Parameters of hLEPOR Metric. 

Ratio 
Other-to-English English-to-Other 

CZ-EN DE-EN ES-EN FR-EN EN-CZ EN-DE EN-ES EN-FR 

HPR:ELP:NPP(W) 7:2:1 3:2:1 7:2:1 3:2:1 3:2:1 1:3:7 3:2:1 3:2:1 

HPR:ELP:NPP(POS) N/A 3:2:1 N/A 3:2:1 N/A 7:2:1 N/A 3:2:1    (W) 1:9 9:1 1:9 9:1 9:1 9:1 9:1 9:1    (POS) N/A 9:1 N/A 9:1 N/A 9:1 N/A 9:1         N/A 1:9 N/A 9:1 N/A 1:9 N/A 9:1 

 

The evaluation results using correlation score with manual judgments demonstrate 

that our enhanced model hLEPOR yielded the highest score on the language pair 

German-to-English and higher scores on other language pairs. Our initial metric 

LEPOR remains the highest score on Spanish-to-English and Czech-to-English 

language pairs. The MPF and ROSE metrics achieved the highest scores on English-

to-French and English-to-Spanish respectively. However, in the overall performance, 
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our improved model hLEPOR reached the top one level with the mean score 0.83, 

which is much higher than the initial version LEPOR with 0.77 score. 

Table 5-4: Spearman Correlation Scores of hLEPOR and Others. 

Evaluation system 

Correlation Score with Human Judgment 

other-to-English English-to-other Mean 

Score CZ-EN DE-EN ES-EN FR-EN EN-CZ EN-DE EN-ES EN-FR 

hLEPOR 0.93 0.86 0.88 0.92 0.56 0.82 0.85 0.83 0.83 

MPF 0.95 0.69 0.83 0.87 0.72 0.63 0.87 0.89 0.81 

LEPOR-B 0.93 0.62 0.96 0.89 0.71 0.36 0.88 0.84 0.77 

LEPOR-A 0.95 0.61 0.96 0.88 0.68 0.35 0.89 0.83 0.77 

ROSE 0.88 0.59 0.92 0.86 0.65 0.41 0.90 0.86 0.76 

AMBER 0.88 0.59 0.86 0.95 0.56 0.53 0.87 0.84 0.76 

Meteor-1.3-RANK 0.91 0.71 0.88 0.93 0.65 0.30 0.74 0.85 0.75 

BLEU 0.88 0.48 0.90 0.85 0.65 0.44 0.87 0.86 0.74 

TER 0.83 0.33 0.89 0.77 0.50 0.12 0.81 0.84 0.64 

MP4IBM1 0.91 0.56 0.12 0.08 0.76 0.91 0.71 0.61 0.58 
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CHAPTER 6: EVALUATION ON ACL-WMT SHARED TASK 

This chapter introduces our participation in the shared tasks of WMT 2013, the Eighth 

International Workshop of Statistical Machine Translation accompanied with ACL 

conference, including our submitted metrics and the official evaluation results (Han et 

al., 2013b). 

6.1 Task Introduction in WMT 2013 

In the WMT 2013, there are mainly three kinds of shared tasks, i.e. the MT task, the 

MT evaluation task, and the quality estimation (QE) task. This section introduces our 

participation in the MT evaluation task. The MT evaluation task is to evaluate the 

translation qualities of submitted MT systems, including manual judgments and 

automatic MT evaluation. 

In addition to the traditional language corpora, i.e. English, Spanish, German, French, 

and Czech, there is one new language Russian participated in the WMT 2013; thus, 

there are two new language pairs in translation, the English-to-Russian and Russian-

to-English. In these two newly added language pairs, there are not very many training 

or developing data. 

For each language pair, the evaluation task is to evaluate the translation quality of one 

single document that contains 3,000 sentences. The participated MT systems in each 

language pair are shown in Table 6-1 (Bojar et al., 2013). The evaluation criteria for 

the automatic MT emulation metrics are the correlation score with human judgements, 
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including Spearman, Pearson and Kendall’s tau. See Section 2.3 for the detailed 

evaluation criteria. 

Table 6-1: Participated MT Systems in WMT 2013. 

English-to-Other Other-to-English 

Language pair MT systems Language pair MT systems 

EN-ES 13 ES-EN 12 

EN-FR 17 FR-EN 13 

EN-DE 15 DE-EN 17 

EN-CS 12 CS-EN 11 

EN-RU 14 RU-EN 19 

 

6.2 Submitted Methods 

We submitted two versions of our methods to the shared tasks in WMT-2013. The 

submitted metrics are LEPOR_v3.1 and nLEPOR_baseline. The LEPOR_v3.1 is 

actually the                 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ metric and the nLEPOR_baseline is the n-gram 

based      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅metric with default parameter values. See Section 4.2 “variants of 

LEPOR” for detailed formula introduction. The parameters in the hLEPOR metric 

utilized are the same set as in the last section, testing for WMT-2011 corpora. For the 

nLEPOR_baseline metric, we utilized the unigram harmonic mean in the factor 

HPR.The parameters   and   in nLEPOR are tuned to be the value 9 and 1 

respectively for all the language pairs, except for Czech-to-English with the value 1 

and 9. 
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6.3 Official Evaluation Results 

There are 18 and 20 effective automatic MT evaluation metrics for the English-to-

Other and Other-to-English translation directions respectively. Some of the metrics 

only performed on single direction, such as English-to-other or other-to-English. For 

instance, the UMEANT and Deprif metrics only submitted evaluation results for 

other-to-English direction; and the ACTa only submitted the evaluation results for 

English-to-French and English-to-German. However, we submitted our evaluation 

results on both translation directions. 

6.3.1 System-level Evaluation Results 

This section introduces our metrics performances in system level correlation scores 

with manual judgments. We firstly show the English-to-other direction and then the 

other-to-English direction. 

6.3.1.1 The Official Results of English-to-other MT Evaluation 

Table 6-2 and Table 6-3 demonstrate the official results using Pearson and Spearman 

correlation scores respectively. Table 6-2 shows LEPOR_v3.1 and nLEPOR_baseline 

yield the highest and the second highest average Pearson correlation score 0.86 and 

0.85 respectively with human judgments at system-level on five English-to-other 

language pairs. LEPOR_v3.1 and nLEPOR_baseline also yield the highest Pearson 

correlation score on English-to-Russian (0.77) and English-to-Czech (0.82) language 

pairs respectively. The testing results of LEPOR_v3.1 and nLEPOR_baseline show 

better correlation scores as compared to METEOR (0.81), BLEU (0.80) and TER-

moses (0.75) on English-to-other language pairs, which is similar with the training 
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results. On the other hand, using the Spearman rank correlation coefficient, 

SIMPBLEU_RECALL yields the highest correlation score 0.85 with human 

judgments. Our metric LEPOR_v3.1 also yields the highest Spearman correlation 

score on English-to-Russian (0.85) language pair, which is similar with the result 

using Pearson correlation and shows its robust performance on this language pair. 

  Table 6-2: System-level Pearson Correlation Scores. 

Directions EN-FR EN-DE EN-ES EN-CS EN-RU Av 

LEPOR_v3.1 .91 .94 .91 .76 .77 .86 

nLEPOR_baseline .92 .92 .90 .82 .68 .85 

SIMPBLEU_RECALL .95 .93 .90 .82 .63 .84 

SIMPBLEU_PREC .94 .90 .89 .82 .65 .84 

NIST-mteval-inter .91 .83 .84 .79 .68 .81 

Meteor .91 .88 .88 .82 .55 .81 

BLEU-mteval-inter .89 .84 .88 .81 .61 .80 

BLEU-moses .90 .82 .88 .80 .62 .80 

BLEU-mteval .90 .82 .87 .80 .62 .80 

CDER-moses .91 .82 .88 .74 .63 .80 

NIST-mteval .91 .79 .83 .78 .68 .79 

PER-moses .88 .65 .88 .76 .62 .76 

TER-moses .91 .73 .78 .70 .61 .75 

WER-moses .92 .69 .77 .70 .61 .74 

TerrorCat .94 .96 .95 na na .95 

SEMPOS na na na .72 na .72 

ACTa .81 -.47 na na na .17 

ACTa5+6 .81 -.47 na na na .17 
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Table 6-3: System-level Spearman Correlation Scores. 

Directions EN-FR EN-DE EN-ES EN-CS EN-RU Av 

SIMPBLEU_RECALL .92 .93 .83 .87 .71 .85 

LEPOR_v3.1 .90 .9 .84 .75 .85 .85 

NIST-mteval-inter .93 .85 .80 .90 .77 .85 

CDER-moses .92 .87 .86 .89 .70 .85 

nLEPOR_baseline .92 .90 .85 .82 .73 .84 

NIST-mteval .91 .83 .78 .92 .72 .83 

SIMPBLEU_PREC .91 .88 .78 .88 .70 .83 

Meteor .92 .88 .78 .94 .57 .82 

BLEU-mteval-inter .92 .83 .76 .90 .66 .81 

BLEU-mteval .89 .79 .76 .90 .63 .79 

TER-moses .91 .85 .75 .86 .54 .78 

BLEU-moses .90 .79 .76 .90 .57 .78 

WER-moses .91 .83 .71 .86 .55 .77 

PER-moses .87 .69 .77 .80 .59 .74 

TerrorCat .93 .95 .91 na na .93 

SEMPOS na Na na .70 na .70 

ACTa5+6 .81 -.53 na na na .14 

ACTa .81 -.53 na na na .14 

 

6.3.1.2 The Official Results of other-to-English MT Evaluation 

Table 6-4 and Table 6-5 demonstrate the official results using Pearson and Spearman 

correlation scores respectively for other-to-English translation direction. 

METEOR yields the highest average correlation scores 0.95 and 0.94 respectively 

using Pearson and Spearman rank correlation methods on other-to-English language 

pairs. The average performance of nLEPOR_baseline is a little better than 

LEPOR_v3.1 on the five language pairs of other-to-English even though it is also 
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moder-ate as compared to other metrics. However, using the Pearson correlation 

method, nLEPOR_baseline yields the average correlation score 0.87 which already 

wins the BLEU (0.86) and TER (0.80) as shown in Table 6-4. 

Table 6-4: System-level Pearson Correlation on other-to-English Language Pairs. 

Directions FR-EN DE-EN ES-EN CS-EN RU-EN Av 

Meteor .98 .96 .97 .99 .84 .95 

SEMPOS .95 .95 .96 .99 .82 .93 

Depref-align .97 .97 .97 .98 .74 .93 

Depref-exact .97 .97 .96 .98 .73 .92 

SIMPBLEU_RECALL .97 .97 .96 .94 .78 .92 

UMEANT .96 .97 .99 .97 .66 .91 

MEANT .96 .96 .99 .96 .63 .90 

CDER-moses .96 .91 .95 .90 .66 .88 

SIMPBLEU_PREC .95 .92 .95 .91 .61 .87 

LEPOR_v3.1 .96 .96 .90 .81 .71 .87 

nLEPOR_baseline .96 .94 .94 .80 .69 .87 

BLEU-mteval-inter .95 .92 .94 .90 .61 .86 

NIST-mteval-inter .94 .91 .93 .84 .66 .86 

BLEU-moses .94 .91 .94 .89 .60 .86 

BLEU-mteval .95 .90 .94 .88 .60 .85 

NIST-mteval .94 .90 .93 .84 .65 .85 

TER-moses .93 .87 .91 .77 .52 .80 

WER-moses .93 .84 .89 .76 .50 .78 

PER-moses .84 .88 .87 .74 .45 .76 

TerrorCat .98 .98 .97 na na .98 
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Table 6-5: System-level Spearman Correlation on other-to-English Language Pairs. 

Directions FR-EN DE-EN ES-EN CS-EN RU-EN Av 

Meteor .98 .96 .98 .96 .81 .94 

Depref-align .99 .97 .97 .96 .79 .94 

UMEANT .99 .95 .96 .97 .79 .93 

MEANT .97 .93 .94 .97 .78 .92 

Depref-exact .98 .96 .94 .94 .76 .92 

SEMPOS .94 .92 .93 .95 .83 .91 

SIMPBLEU_RECALL .98 .94 .92 .91 .81 .91 

BLEU-mteval-inter .99 .90 .90 .94 .72 .89 

BLEU-mteval .99 .89 .89 .94 .69 .88 

BLEU-moses .99 .90 .88 .94 .67 .88 

CDER-moses .99 .88 .89 .93 .69 .87 

SIMPBLEU_PREC .99 .85 .83 .92 .72 .86 

nLEPOR_baseline .95 .95 .83 .85 .72 .86 

LEPOR_v3.1 .95 .93 .75 0.8 .79 .84 

NIST-mteval .95 .88 .77 .89 .66 .83 

NIST-mteval-inter .95 .88 .76 .88 .68 .83 

TER-moses .95 .83 .83 0.8 0.6 0.80 

WER-moses .95 .67 .80 .75 .61 .76 

PER-moses .85 .86 .36 .70 .67 .69 

TerrorCat .98 .96 .97 na na .97 

 

6.3.2 Segment-level MT Evaluation Results 

In addition to the system level MT evaluation, our metric can also be utilized for the 

segment level MT evaluation; because our metrics first measure the sentence score 

and then the document score. However, many automatic MT evaluation metrics can 

only perform on system level (document score), thus, the participated automatic MT 
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evaluation metrics for segment level strategy were much fewer than the system level. 

This section introduces our performance in the segment level MT evaluation. The 

evaluation criterion is the Kendall’s tau. 

From the Table 6-6 and Table 6-7, the overall segment-level performance of LEPOR 

is moderate with the average Kendall’s tau correlation score 0.10 and 0.19 

respectively on English-to-other and other-to-English directions. This is due to the 

fact that we trained our metrics at system-level in this shared metrics task. The 

segment level evaluation scores are actually the bonuses of our participated metrics. 

Table 6-6: Segment-level Kendall’s tau Correlation scores on WMT13 English-to-other Language Pairs. 

Directions EN-FR EN-DE EN-ES EN-CS EN-RU Av 

SIMPBLEU_RECALL .16 .09 .23 .06 .12 .13 

Meteor .15 .05 .18 .06 .11 .11 

SIMPBLEU_PREC .14 .07 .19 .06 .09 .11 

sentBLEU-moses .13 .05 .17 .05 .09 .10 

LEPOR_v3.1 .13 .06 .18 .02 .11 .10 

nLEPOR_baseline .12 .05 .16 .05 .10 .10 

dfki_logregNorm-411 na na .14 na na .14 

TerrorCat .12 .07 .19 na na .13 

dfki_logregNormSoft-431 na na .03 na na .03 
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Table 6-7: Segment-level Kendall’s tau Correlation scores on WMT13 other-to-English Language Pairs. 

Directions FR-EN DE-EN ES-EN CS-EN RU-EN Av 

SIMPBLEU_RECALL .19 .32 .28 .26 .23 .26 

Meteor .18 .29 .24 .27 .24 .24 

Depref-align .16 .27 .23 .23 .20 .22 

Depref-exact .17 .26 .23 .23 .19 .22 

SIMPBLEU_PREC .15 .24 .21 .21 .17 .20 

nLEPOR_baseline .15 .24 .20 .18 .17 .19 

sentBLEU-moses .15 .22 .20 .20 .17 .19 

LEPOR_v3.1 .15 .22 .16 .19 .18 .18 

UMEANT .10 .17 .14 .16 .11 .14 

MEANT .10 .16 .14 .16 .11 .14 

dfki_logregFSS-33 Na .27 na na Na .27 

dfki_logregFSS-24 Na .27 na na na .27 

TerrorCat .16 .30 .23 na na .23 

 

  



68 

 

CHAPTER 7: QUALITY ESTIMATION OF MT 

This chapter introduces the advanced technology in MT evaluation, which is usually 

called as Quality Estimation (QE) of MT. The Quality Estimation tasks make some 

differences from the traditional evaluation, such as extracting reference-independent 

features from input sentences and the translation, obtaining quality score based on 

models produced from training data, predicting the quality of an unseen translated text 

at system run-time, filtering out sentences which are not good enough for post 

processing, and selecting the best translation among multiple systems, etc. In this 

chapter, we firstly introduce some QE methods without using reference translations. 

Then, we introduce the latest QE tasks, and finally, it is our proposed methods in the 

QE research area. 

7.1 Quality Estimation without using Reference Translations 

In recent years, some MT evaluation methods that do not use the manually offered 

golden reference translations are proposed. The unsupervised MT evaluation is 

usually called as Quality Estimation. Some of the related works have been mentioned 

in previous sections. We introduce some works that have not been discussed in 

previous sections. 

Gamon et al. (2005) investigate the possibility of evaluating MT quality and fluency 

at the sentence level without using the reference translations. Their system can also 

perform as a classifier to identify the worst-translated (highly dysfluent and ill-formed) 

sentences. The SVM classifier is used with linguistic features such as the trigram part-

of-speech tags, context-free grammar productions (the phrase sequences), semantic 
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analysis features, and semantic modification relations, etc. The experiment on 

English-to-French corpus show that the described methods achieve lower correlation 

score with human judgments as compared to the BLEU metric, which uses the 

reference translations. However, when formulated as a classification task for 

identifying the worst-translated sentences, the combination of language model and 

SVM scores outperforms BLEU. 

Thetraditional metrics BLEU and NIST are known to have good correlation with 

human evaluation at the corpus level, but this is not the case at the segment level. 

Specia et al. (2010) addressthe problem of evaluating the quality of MT as a 

prediction task, where reference-independent features are extracted from the input 

sentences and their translation, and a quality score is obtained based on models 

produced from training data. They showthat this approach yields better correlation at 

segment-level with human evaluation as compared to commonly used metrics, even 

with models trained on different MT systems, language-pairs and text domains. 

Suzuki (2011) develops a post-editing system based on phrase-based SMT (Moses) 

and applies it into a sentence-level automatic quality evaluator for machine translation 

in the absence of reference translations. The 28 features they used are from the partial 

least squares regression analysis on translation sentences (without the using of source 

sentences) such as 2-gram and 3-gram language model probability, 2-gram and 3-

gram backward language model probability, POS 2-gram and 3-gram language model 

probability, noun phrase and verb phrase from grammar parser, etc. The experiment 

on Japanese-to-English patent translation, using the criteria adequacy and fluency, 

shows the validity of the designed methods. 

Mehdad, et al. (2012) treat the MT evaluation as a cross-lingual textual entailment 

problem, and design the evaluation focusing on adequacy, semantic equivalence 

between source sentence and target translation, without using reference translations. 

The designed method is built on the advances in cross-lingual textual entailment 
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recognition. They use support vector machine to learn models for classification and 

regression with a linear kernel and default parameters setting. The performances are 

carried out on English-Spanish language pairs. The large feature set is from the part-

of-speech tagger, dependency parsers and named entity recognizers, etc. The used 

features include Surface Form, number of words, punctuation and the ratios, etc.; 

Shallow Syntactic, ratios of POS tags in source and target; Syntactic, number and 

ratios of dependency roles; Phrase Table, lexical phrases extracted from bilingual 

parallel corpus; Dependency Relation, syntactic constraints; and Semantic Phrase 

Table, named entity, etc. Theexperiment on WMT 07 corpora shows higher 

correlation score with human adequacy annotation than METEOR but lower than 

BLEU and TER.  

Other related works about evaluation without using reference translations include 

(Blatz et al., 2004) and (Quirk, 2004) that perform the early attempt to evaluate the 

translation quality avoiding reference translations by the utilizing of large number of 

source, target, and system-dependent features to discriminate the “good” and “bad” 

translations; Albrecht and Hwa (2007) utilizethe regression method and pseudo 

references; Specia and Gimenez (2010) combine the confidence estimation and 

reference-based metrics together for the segment-level MT evaluation; Popović et al. 

(2011) perform the MT evaluation using the IBM model-1 with the information of 

morphemes, 4-gram POS and lexicon probabilities; Avramidis (2012) performs an 

automatic sentence-level ranking of multiple machine translation using the features of 

verbs, nouns, sentences, subordinate clauses and punctuation occurrences to derive 

the adequacy information. The detailed introduction and descriptions of the MT 

Quality Estimation tasks can be reached in (Callison-Burch et al., 2012) and (Felice 

and Specia, 2012). 
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7.2 Latest QE Tasks 

The latest quality estimation tasksof MT can be found in WMT12 (Callison-Burch et 

al., 2012) and WMT13
4
. For the ranking task, they defined a novel task evaluation 

metric that provides some advantages over the traditional ranking metrics. The 

designed criterion DeltaAvg assumes that the reference test set has a number 

associated with each entry that represents its extrinsic value. For instance, using the 

effort scale, they associatea value between 1 and 5 with each sentence, representing 

the quality of that sentence. Given these values, their metric does not need an explicit 

reference ranking, the way the Spearman ranking correlation does. The goal of the 

DeltaAvg metric is to measure how valuable a proposed ranking (hypothesis ranking) 

is according to the extrinsic values associated with the test entries. 

          [ ]  ∑                       (7-1) 

For the scoring task, they usetwo task evaluation metrics that have been traditionally 

used for measuring performance for regression tasks: Mean Absolute Error (MAE) as 

a primary metric, and Root of Mean Squared Error (RMSE) as a secondary metric. 

For a given test set S with entries   ,            , they denoteby       the proposed 

score for entry    (hypothesis), and by       the reference value for entry   (gold-

standard value). They formally define the metrics as follows. 

     ∑                    (7-2) 

      √∑ (           )       (7-3) 

                                                 
4
http://www.statmt.org/wmt13/quality-estimation-task.html 

http://www.statmt.org/wmt13/quality-estimation-task.html
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where        . Both these metrics are nonparametric, automatic and deterministic 

(and therefore consistent), and extrinsically interpretable.  

There appear to be significant differences between considering the quality estimation 

task as a ranking problem versus a scoring problem. The ranking based approach 

appears to be somewhat simpler and more easily amenable to automatic solutions, and 

at the same time provides immediate benefits when integrated into larger applications, 

for instance, the post-editing application described in (Specia, 2011). The scoring-

based approach is more difficult, as the high error rate even of oracle-based solutions 

indicates. It is also well-known from human evaluations of MT outputs that human 

judges also have a difficult time agreeing on absolute-number judgements to 

translations. The experiences in creating the current datasets confirmthat, even with 

highly-trained professionals, it is difficult to arrive at consistent judgements. The 

WMT tasks planto have future investigations on how to achieve more consistent ways 

of generating absolute-number scores that reflect the quality of automated translations. 

7.3 Proposed Methods in the Advanced QE 

Firstly, we introduce our methods in the WMT-13 QE tasks (Han et al., 2013c). Then, 

we introduce our research works out side of the task. 

7.3.1 Proposed Methods in WMT-13 QE Task 

In the WMT-2013 QE shared task (Bojar et al., 2013), we participated the tasks of 

sentence-level English-to-Spanish QE, system selection for English-to-Spanish and 

English-to-German translation, and the word-level QE for binary and multi-class error 

classification. 
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Table 7-1: Developed POS Mapping for Spanish and Universal Tagset. 

ADJ ADP ADV CONJ DET NOUN NUM PRON PRT VERB X . 

ADJ 
PREP, 

PREP/DEL 

ADV, 

NEG 

CC, 

CCAD, 

CCNEG, 

CQUE, 

CSUBF, 

CSUBI, 

CSUBX 

ART 

NC, 

NMEA, 

NMON, 

NP, 

PERCT,  

UMMX 

CARD, 

CODE, 

QU 

DM, 

INT, 

PPC, 

PPO, 

PPX, 

REL 

SE 

VCLIger, 

VCLIinf, 

VCLIfin, 

VEadj, 

VEfin, 

VEger, 

VEinf, 

VHadj, 

VHfin, 

VHger, 

VHinf, 

VLadj, 

VLfin, 

VLger, 

VLinf, 

VMadj, 

VMfin, 

VMger, 

VMinf, 

VSadj, 

VSfin, 

VSger, 

VSinf 

ACRNM, 

ALFP, 

ALFS, 

FO, 

ITJN, 

ORD, 

PAL, 

PDEL, 

PE, PNC, 

SYM 

BACKSLASH, 

CM, COLON, 

DASH, DOTS, 

FS, LP, QT, 

RP, 

SEMICOLON, 

SLASH 

 

For the sentence-level EN-ES QE task, we designed the English and Spanish POS 

tagset mapping as shown in Table 7-1. The 75 Spanish POS tags yielded by the 

Treetagger (Schmid, 1994) are mapped to the 12 universal tags developed in (Petrov 

et al., 2012). Furthermore, we designed a novel evaluation method, the enhanced 

BLEU (EBLEU) as bellow: 

                  ∑                    (7-4) 

     {                                 (7-5) 

The EBLEU formula is designed with the factors of modified length penalty (   ), 

n-gram precision and recall, the   and   representing the lengths of hypothesis (target) 

sentence and source sentence respectively. 

For the system selection task, we investigated the probability model Naïve Bayes (NB) 

and support vector machine (SVM) classification algorithms in the QE performances 

using the features of Length penalty, Precision, Recall and Rank values. 

For the word-level error classification task, we investigated a discriminative 

undirected probabilistic graphical model Conditional random field (CRF), in addition 
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to the NB algorithm. The official results show that the NB algorithm can show overall 

better performance than the CRF for error classification tasks. 

7.3.2 QE Model using Universal Phrase Category 

We have designed a universal phrase tagset and utilized it into the MT evaluation 

without relying on reference translations (Han et al., 2013d). The universal tags we 

refined are 9 commonly used categories, such as NP, VP, AJP, AVP, PP, S, CONJP, 

COP, and X. The NP tag covers noun phrase, Wh- leading noun phrase, quantifier 

phrase, prenominal modifiers within an NP, head of the NP, classifier phrase, and 

localizer phrase, Spanish multiword proper name (MPN). The VP tag covers verbal 

phrase, coordinated verb compound (VCD), verb-resultative and verb-directional 

compounds (VRD), verb compounds forming a modifier + head relationship (VSB), 

verb compounds formed by VV+VC (VCP), verb nucleus (VN.fr), coordinated verb 

phrase (CVP.de), etc. The AJP tag covers adjective phrase, Wh-adjective phrase, 

determiner phrase (DP.cn), coordinated adjective phrase (CAP.de), multi-token 

adjective (MTA.de), etc. The AVP tag covers adverb phrase, Wh-adverb phrase, 

English particle (PRT), Chinese “XP+地” phrase, coordinated adverbial phrase, etc. 

The PP tag covers prepositional phrase, Wh-prepositional phrase, German coordinated 

adposition (CAC), German coordinated adpositional phrase (CPP), German 

coordinated complementiser (CCP), Spanish multitoken preposition (MTP), etc. The 

S tag covers sentence, sub-sentence, clause introduced by subordinating conjunction, 

direct question introduced by Wh-word or Wh-phrase, fragment, reduced relative 

clause, parenthetical, incomplete sentences, etc. The CONJP tag covers conjunction 

phrase, multitoken conjunction, etc. The tag COP covers English unlike coordinated 
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phrase, Chinese unidentical coordination phrase, French coordinated phrase 

(COORD), German coordination (CO), etc. The X tag covers URL, punctuations, list 

marker, interjection, Chinese chunks of text that are redundant in a sentence, German 

Negra idiosyncratic unit (ISU), German Negra quasi-language (QL), etc. 

These 9 phrase categories are the most frequently appearing ones in the existing 

treebanks. We design these 9 phrase categories as the universal phrase tagset, and 

conduct the mappings from the tags of existing treebanks to the universal ones. The 

studied 25 treebanks cover 21 languages, i.e., Arabic, Catalan, Chinese, Danish, 

English, Estonian, French, German, Hebrew, Hindi, Hungarian, Icelandic, Italian, 

Japanese, Korean, Portuguese, Spanish, Swedish, Thai, Urdu, and Vietnamese. The 

mapping results are shown in the tables of Appendix A. 

To utilize the designed universal phrase tags into QE research. We firstly, parse the 

source and target (automatic translated) sentences and extract their phrase sequences. 

Then, we convert the phrase sequences into universal tags using our designed 

mapping. Finally, we measure the similarity score on the converted source and target 

phrase sequences. Let’s see an example with French-to-English MT evaluation. 

Figure 7-1 is the parsing for the source French and target English sentences. Figure 7-

2 is the extracted phrase sequences of the two sentences and the conversion into 

universal phrase tag categories. 
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Figure 7-1: Parsing of the French and English Sentences. 

 

Figure 7-2: Conversion of the Phrase Tags into Universal Categories. 
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Finally, we designed the metric HPPR to measure the similarity of the phrase tag 

sequences. This metric is the harmonic mean of N1-gram position difference penalty        , N2-gram precision       and N3-gram recall      . 

                     ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                    (7-6) 

        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅     ∑         (7-7) 

          (∑          )  (7-8) 

            ∑            (7-9) 

We conducted some experiments using our designed HPPR methods. The corpora 

used in the experiments are from the international workshop ofstatistical machine 

translation (WMT). To avoid theoverfitting problem, the WMT 2011 corpora are used 

as the development set to tune the weights of factors in the formula to make the 

evaluation results closeto the human judgments. Then the WMT 2012 corpora are 

used as the testingset with the formula that has the same parameters tuned in the 

developmentstage. 

There are 18 and 15 systems respectively in WMT 2011 and WMT 2012 

producingthe French-to-English translation documents, each document containing 

3003 sentences. Each year, there are hundreds of human annotators to evaluatethe MT 

system outputs, and the human judgments task usually costs hundredsof hours of 

labor. The human judgments are used to validate the automaticmetrics. The system-

level Spearman correlation coefficient of the different evaluationresults will be 

calculated as compared to the human judgments. Thestate-of-the-art evaluation 

metrics BLEU (measuring the closeness between thehypothesis and reference 

translations) and TER (measuring the editing distance) are selected for the 

comparison with the designed model HPPR.The values of N2 and N3 are both 
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selected as 3 due to the fact that the4-gram chunk match usually results in 0 score. 

The tuned factor weights inthe formula are shown in Table 7-2. The experiment 

results on the testing corpora are shown in Table 7-3, where the phrase “Use 

Reference?”means whether this metric uses reference translations in the evaluation. 

The experiment results on the testing corpora show that HPPR without using 

reference translations has yielded comparable correlation score 0.63 with human 

judgments even though lower than the reference-aware metrics. This proves to be a 

promising investigation. 

Table 7-2: Tuned Parameters of HPPR in the Development Stage. 

Factors Parameters Ratio                8:1:1                1:1:8                  1:8:1 

 

Table 7-3: Evaluation Results of HPPR on WMT 2012 Corpora. 

Metric Use reference? Spearman correlation 

BLEU Yes 0.85 

TER Yes 0.77 

HPPR No 0.63 
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CHAPTER 8: CONCLUSION AND FUTURE WORK 

To facilitate the development of MT itself, it is crucial to tell the MT researchers and 

developers whether his or her system achieves an improvement after conducting some 

revisions, such as new algorithms or features. This work introduces our proposed 

methods for the automatic MT evaluation. To address some of the weaknesses in the 

existing MT evaluation methods, we designed augmented factors, tunable parameters 

and concise linguistic features to yield reliable evaluation. Furthermore, our methods 

can be easily employed to different language pairs, or new language pairs due to the 

concise external resources utilized. For the existing weaknessses of MT evaluation, 

such as the evaluation with non-English in target language and the low resource 

language pairs, our proposed methods have shown some improvements as compared 

with the state-of-the-art metrics. We also introduced our designed model for the 

quality estimation of MT and the experiments show that our proposed methods 

without using reference translations yielded promising results as compared with the 

reference-aware metrics. In spite of the many efforts from the MT evaluation 

researchers, there remain some issues for the future research as bellow. 

8.1 Issues in Manual Judgments 

So far, the human judgment scores of MT results are usually considered as the golden 

standard that the automatic evaluation metrics should try to approach. However, some 

improper handlings in the process also yield problems. For instance, in the ACL 

WMT 2011 English-Czech task, the multi-annotator agreement kappa value k is very 
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low and even the exact same string produced by two systems is ranked differently 

each time by the same annotator (Bojar et al., 2011). Secondly, the evaluation results 

are highly affected by the manual reference translations. How to ensure the quality of 

reference translations and the agreement level of human judgments are two important 

problems. 

8.2 Issues in Automatic Evaluation 

First, automatic evaluation metrics are indirect measures (Moran and Lewis, 2011)of 

translation quality, because that they are usually using the various string distance 

algorithms to measure the closeness between the machine translation system outputs 

and the manually offered reference translations and they are based on the calculating 

of correlation score with manual MT evaluation. 

Furthermore, the existing automatic evaluation metrics tend to ignore the relevance of 

words (Koehn, 2010). For instance, the name entities and core concepts are more 

important than punctuations and determiners but most automatic evaluation metrics 

put the same weight on each word of the sentences.  

Third, existing automatic evaluation metrics usually yield meaningless score, which is 

very test set specific and the absolute value is not informative. For instance, what is 

the meaning of -16094 score by the MTeRater metric (Parton et al., 2011) or 1.98 

score by ROSE (Song and Cohn, 2011)?  

Fourth, some of the existing automatic metrics only use the surface words information 

without any linguistic features, which makes them result in low correlation with 

human judgment and receives much criticism from the linguists; on the other hand, 

some metrics utilize too many language specific linguistic features, which make it 
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difficult to promote them on other language pairs. How to handle the balance between 

the two aspects is a challenge before researchers. 

The automatic evaluation metrics should try to achieve the goals of low cost, tunable, 

consistent, meaningful, and correct, of which the first three aspects are easily 

achieved but the rest two goals, i.e. meaningful and correct, and the robustness in 

different language pairs are usually the challenges in front of us. 

8.3 Future Work 

This work tried to advance the MT evaluation by using augmented factors and concise 

linguistic features. In our future work, we plan to investigate the MT evaluation 

performance from some different aspects. 

Firstly, we want to utilize our designed universal phrase tagset into the MT evaluation 

on more language pairs. In this work, we only employ the universal tagset into 

French-English MT evaluation, and it has shown some promising results. 

Secondly, we plan to enhance the performance of the designed LEPOR MT 

evaluation models with extended linguistic features, especially semantic features, 

such as synonyms, paraphrasing and text entailments. 

Thirdly, we want to investigate some machine learning technologies into MT 

evaluation. For instance, we plan to utilize the deep learning method to convert the 

surface words into the vector form. In this way, we can measure the similarity of 

source and target languages on the vector level instead of word or sentence level. The 

reference translation can be a waiver in this framework. 
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APPENDIX A: Proposed Universal Phrase Tagset and Mappings 

Phrase Tagset Mapping between Universal Tagset and Existing Treebanks 

Universal 

Phrase Tag 

English 

PennTreebank I 

(Marcus et al., 

1993) 

English 

PennTreebank II 

(Bies et al., 1995) 

Chinese 

PennTreebank 

(Xue and Jiang, 

2010) 

Portuguese 

Floresta 

Treebank 

(Afonso et al., 

2002) 

FrenchTreebank 

(Abeille, 2003) 

Japanese 

Treebank Tüba-

J/S (Kawata and 

Bartels, 2000) 

NP NP, WHNP 
NP, NAC, NX, QP, 

WHNP 

NP, CLP, QP, LCP, 

WHNP 
np NP 

NPper, NPloc, 

NPtmp, NP, 

NP.foc 

VP VP VP 

VP, VCD, VCP, 

VNV, VPT, VRD, 

VSB 

vp 
VN, VP, VPpart, 

VPinf 

VP.foc, VP, 

VPcnd, VPfin 

AJP ADJP ADJP, WHADJP ADJP, DP, DNP ap, adjp AP 
AP.foc, AP, 

APcnd 

AVP ADVP, WHADVP 
ADVP, WHAVP, 

PRT, WHADVP 
ADVP, DVP advp AdP 

ADVP.foc, 

ADVP 

PP PP, WHPP PP, WHPP PP pp PP 

PP, PP.foc, 

PPnom, PPgen, 

PPacc 

S 
S, SBAR, SBARQ, 

SINV, SQ 

S, SBAR, SBARQ, 

SINV, SQ, PRN, 

FRAG, RRC 

IP, CP, PRN, FRAG, 

INC 

fcl, icl, acl, cu, 

x, sq 

SENT, Ssub, Sint, 

Srel, S 
S, SS 

CONJP  CONJP     

COP  UCP UCP  COORD  

X X X, INTJ, LST 
LST, FLR, DFL, 

INTJ, URL, X 
  ITJ, GR, err 

Universal 

Phrase Tag 

Danish Arboretum 

Treebank 

German 

NegraTreebank 

(Skut et al., 1997) 

Spanish UAM 

Treebank (Moreno et 

al., 1999) 

Hungarian 

Szeged 

Treebank 

Spanish Treebank 

(Volk, 2009) 

Swedish 

Talbanken05 

(Nivre et al., 

2006) 

NP np NP, CNP, MPN, NM 
HOUR, NP, QP, 

SCORE, TITLE 
NP, QP NP, MPN CNP, NP 

VP vp, acl VP, CVP, VZ, CVZ VP 
VP, INF_, 

INF0 
SVC CVP, VP 

AJP ajp AP, CAP, MTA ADJP ADJP AP AP, CAP, 

AVP dvp AVP, CAVP, AA 
ADVP, PRED-

COMPL 

ADVP, PA_, 

PA0 
AVP AVP, CAVP, 

PP pp PP, CAC, CPP, CCP PP PP PP, MTP CPP, PP 

S fcl, icl 
S, CS, CH, DL, 

PSEUDO 
CL, S S S, INC CS, S 

CONJP cp   C0 MTC  

COP  CO  CP 

CS, CNP, CPP, CAP, 

CAVP, CAC, CCP, 

CO 

CONJP, CXP 

X par ISU, QL  FP, XP  NAC, XP 
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Phrase Tagset Mapping between Universal Tagset and Existing Treebanks: Continue 

Universal 

Phrase Tag 

Arabic PENN 

Treebank (Bies and 

Maamouri, 2003.) 

Korean Penn Treebank 

(Han et al., 2001; 2002) 

Estonian Arborest 

Treebank 

Icelandic 

IcePaHC 

Treebank 

(Wallenberg et 

al., 2011) 

Italian ISST Treebank 

(Montemagni et al., 2000; 

2003) 

Portuguese Tycho 

Brahe Treebank 

(Galves & Faria, 

2010) 

NP 
NP, NX, QP, 

WHNP 
NP 

AN>, <AN, NN>, 

<NN, 
NP, QP, WNP SN 

NP, NP-ACC, NP-

DAT, NP-GEN, 

NP-SBJ, IP-SMC, 

NP-LFD, NP-

ADV, NP-VOC, 

NP-PRN 

VP VP VP 
VN>, <VN, 

INF_N>, <INF_N 
VP IBAR VB, VB-P 

AJP ADJP, WHADJP ADJP, DANP  
ADJP, ADJP-

SPR 
SA ADJP, ADJP-SPR 

AVP ADVP, WHADVP ADVP, ADCP AD>, <AD 

ADVP, ADVP-

DIR, ADVP-

LOC, ADVP-

TMP, RP 

SAVV ADVP, WADVP 

PP PP, WHPP   
PP, WPP, PP-BY, 

PP-PRN 
SP, SPD, SPDA 

PP, PP-ACC, PP-

SBJ, PP-LFD, PP-

PRN, PP-LOC 

S 
S, SBAR, SBARQ, 

SQ 
S   

F, SV2, SV3, SV5, FAC, 

FS, FINT, F2 

RRC, CP, CP-

REL, IP-MAT, IP-

INF, IP-SUB, CP-

ADV, CP-THT 

CONJP CONJP, NAC   CONJP CP, COMPC CONJP 

COP UCP  PN>, <PN  FC, COORD  

X 
PRN, PRT, FRAG, 

INTJ, X 
INTJ, PRN, X, LST, XP <P, P>, <Q, Q> LATIN FP, COMPT, COMPIN  

       

Universal 

Phrase Tag 

Hindi-Urdu 

Treebank (Bhatt et 

al., 2012) 

Catalan AnCora 

Treebank (Civit and 

Marti, 2004; Taulé et al., 

2008) 

Swedish Treebank () 

Vietnamese 

Treebank 

(Nguyen et al., 

2009) 

Thai CG Treebank 

(Ruangrajitpakorn et al., 

2009) 

Hebrew (Sima’an 

et a., 2001) 

NP 

NP, NP-P, NP-NST, 

SC-A, SC-P, NP-P-

Pred 

Sn NP NP, WHNP, QP np, num, spnum NP-gn-(H) 

VP VP, VP-Pred, V’ Gv VP VP  
PREDP, VP, VP-

MD, VP-INF 

AJP AP, AP-Pred Sa AP AP, WHAP  ADJP-gn-(H) 

AVP DegP sadv, neg AVP RP, WHRP  ADVP 

PP  Sp PP PP, WHPP pp PP 

S  

S, S*, S.NF.C, S.NF.A, 

S.NF.P, S.F.C, 

S.F.AComp, S.F.AConc, 

S.F.Acons, S.F.Acond, 

S.F.R,  

ROOT, S S, SQ, SBAR s, ws, root 
FRAG, FRAGQ, 

S, SBAR, SQ 

CONJP  conj.subord, coord     

COP CCP, XP-CC      

X CP 

interjeccio, 

morfema.verbal, 

morf.pron 

XP XP, YP, MDP  INTJ, PRN 
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